Изобретение относится к области промышленного производства крупногабаритных чугунных отливок, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, и предназначено для использования в атомном энергомашиностроении при производстве высоконадежной контейнерной техники для транспортировки и длительного хранения отработавшего ядерного топлива и других радиоактивных материалов.
Известны различные марочные составы серого, ковкого и высокопрочного чугуна, применяемых в машиностроительных отраслях промышленности (например, чугун марок типа СЧ, КЧ и ВЧ), а также другие аналоги, указанные в научно-технической и патентной литературе [1-5]. Однако известные марки чугуна не отвечают предъявляемым требованиям по основным физико-механическим, технологическим и служебным свойствам, обеспечивающим высокое качество литого метала и, соответственно, весь комплекс характеристик работоспособности и эксплуатационной надежности создаваемой контейнерной техники в сложных условиях транспортировки и длительного хранения отработавшего ядерного топлива.
Наиболее близким к заявляемой композиции по базовому химическому составу и функциональному назначению компонентов является высокопрочный чугун марки ВЧ 40 по ГОСТ 7293-85 [1], содержащий в своем составе легирующие и примесные элементы в следующем соотношении, мас.%:
Данную марку чугуна в соответствии с требованиями действующей нормативно-технической документации рекомендуется использовать в различных отраслях промышленности и народного хозяйства в качестве конструкционного и машиноподелочного материала при производстве неответственных деталей серийного оборудования общетехнического назначения. При этом известная композиция характеризуется повышенной склонностью к дендритной ликвации и структурной анизотропии, что обусловливает заметное снижение стабильности структурного состояния и приводит к широкому разбросу и ухудшению основных физико-механических и служебных характеристик литого металла в условиях статического, динамического и ударного нагружений [6-10], что не обеспечивает требуемый уровень работоспособности и эксплуатационной надежности высоконагруженных элементов конструкции создаваемого контейнерного оборудования и, в частности транспортно-упаковочных комплектов типа ТУК 128. Согласно требованиям действующих государственных и отраслевых стандартов, а также другой нормативно-технической документации, содержание в марочном составе чугунов-аналогов ряда легирующих и примесных элементов, в значительной мере определяющих требуемое структурное состояние металла и уровень его важнейших служебных характеристик, не контролируется и находится в весьма широких концентрационных пределах [5-9].
Техническим результатом данного изобретения является создание высокотехнологичной марки чугуна, обладающей меньшей склонностью к дендритной ликвации и структурной анизотропии, во многом определяющих требуемое структурное состояние и качество крупногабаритной отливки и, как следствие, заданный уровень сопротивления литого металла хрупкому разрушению в условиях ударного, циклического и других видов динамического нагружения. Технический результат достигается тем, что в состав известной марки чугуна, содержащей углерод, кремний, марганец, серу, фосфор и железо, дополнительно введены ванадий, ниобий, магний и кальций при следующем соотношении компонентов, мас.%:
При этом введено ограничение суммарного содержания элементов, превышение которого отрицательно влияет на формирование оптимального структурного состояния и существенно снижает заданный уровень основных физико-механических и эксплуатационных характеристик материала, в частности:
- суммарное содержание V+Nb не должно превышать 0,08%;
- суммарное содержание S+P не должно превышать 0,015%.
Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемая композиция обеспечивала требуемый уровень и стабильность важнейших структурно-чувствительных характеристик литого металла, во многом определяющих заданную работоспособность и эксплуатационную надежность высоконагруженных корпусных элементов создаваемой контейнерной сборки ТУК 128 в экстремальных условиях транспортировки и длительного хранения отработавшего ядерного топлива.
Введение в заявляемую композицию расчетных количеств микролегирующих и модифицирующих добавок ванадия, ниобия, магния и кальция, как элементов с высокой термодинамической активностью и особыми физико-химическими свойствами, в указанном соотношении с другими компонентами, существенно влияет на процессы структурообразования литого чугуна и, в частности, положительно воздействует на форму, размер и дисперсность образующихся феррито-перлитных, графитных и других структурных составляющих. При этом, как показали наши металлографические исследования, выполненные в соответствии с требованиями ГОСТ 3443-87 и др. общепринятых стандартных методик, уменьшается структурная неоднородность в межосевых пространствах дендритов, происходит более равномерное распределение вторичных и избыточных фаз по всему сечению крупногабаритной отливки и существенно снижается степень анизотропии механических свойств литого металла. Уменьшается его склонность к трещинообразованию и повышается работоспособность в условиях ударного и динамического нагружения. Вязкость разрушения, во многом отражающая качество литого металла и характеризующая его деформационную способность и сопротивление развитию трещин, существенно возрастает. Фрактографический анализ поверхности изломов образцов, выполненный методом сканирования на растровом электронном микроскопе показал, что в заявляемой композиции доля вязкой составляющей в зоне разрушения заметно возрастает по сравнению с известным составом.
Избыточное модифицирование и введение в состав заявляемой композиции микролегирующих добавок вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния на весь комплекс основных физико-механических свойств литого метала и не способствует обеспечению требуемого качества крупногабаритных отливок, а также осложняет рецептурно-технологическую сторону проведения комплексного модифицирования.
Важное значение в процессе структурообразования высокопрочного чугуна с шаровидным графитом и формирования заданного уровня механических свойств, отвечающих требованиям надежности по принятым в настоящее время критериям теории хрупкой прочности, имеет указанное в формуле изобретения соотношение графитизирующих и сфероидизирующих элементов. При этом дисперсность зернистых графитовых включений обеспечивается на уровне 45-60 мкм (ШГ 45). Исследования показали, что наилучшие результаты обеспечиваются при соблюдении соотношения, представленного в табл.1, тогда как изменение этого соотношения за пределы формулы изобретения приводит к существенному снижению степени эвтектичности чугуна и способствует подавлению механизма графитизирующего модифицирования.
На решение задачи повышения технологичности и качества металлоемких чугунных отливок направлено также и ограничение в заявляемой композиции суммарного содержания остаточных примесей серы и фосфора до указанного в формуле изобретения пределов. При этом улучшаются литейные свойства чугуна, в том числе жидкотекучесть, уменьшается образование усадочных раковин и пор, снижается склонность литого металла к зональной и дендритной ликвации. Расчеты показывают, что при превышении указанных в формуле изобретения значений создаются благоприятные концентрационные условия и физико-химические предпосылки для образования в кристаллизующемся расплаве легкоплавких двойных и тройных эвтектик в виде сетки грубых и хрупких включений, что повышает склонность литья к образованию хрупких трещин и снижает деформационную способность литого металла.
Повышению качества металла крупногабаритных отливок и улучшению его технологичности на стадии металлургического передела также способствует соблюдение условия, когда соотношение V+Nb в расплаве составляет не более 0,08% при комплексном воздействии вводимых модифицирующих добавок. При несоблюдении данного требования в сочетании с другими технологическими указаниями задача получения качественных крупногабаритных отливок с заданным комплексом важнейших физико-механических характеристик существенно осложняется.
Полученный более высокий уровень физико-механических, технологических и служебных характеристик литого металла обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным соотношением вводимых микролегирующих и модифицирующих добавок, а также контролированием чистоты металла по остаточным примесям, во многом определяющим процессы структурообразования и формирования всего комплекса свойств литого металла.
В ЦНИИ КМ «Прометей» совместно с другими предприятиями отрасли в соответствии с планом приводимых опытно-промышленных работ в рамках выполнения федеральных целевых научно-технических программ [11, 12] выполнен необходимый комплекс опытно-промышленных работ по выплавке, механической обработке и оценке основных физико-механических, технологических и служебных характеристик заявляемой композиции. Металл выплавлялся одновременно в двух промышленных индукционных электропечах ИЧТ-25 мощностью 25 т с последующей разливкой в форму для получения опытных заготовок для корпусов контейнеров требуемых размеров (⌀ 1400, высота 4100 мм, толщина стенки 350 мм, масса отливки ~40 т).
Химический состав исследованных композиций, а также результаты определения основных свойств и характеристик металла полученных отливок представлены в табл.1, 2.
Ожидаемый технико-экономический эффект применения разработанной марки чугуна в машиностроительных отраслях промышленности и народном хозяйстве выразится в повышении работоспособности и эксплуатационной надежности материала в составе создаваемой контейнерной техники, что позволяет решить ряд важных радиационно-экологических и социальных проблем в области охраны окружающей среды в условиях надвигающегося обострения энергетического и экологического кризиса мирового сообщества.
№ соста-
ва
ЛИТЕРАТУРА
1. ГОСТ 7293-85 «Чугун с шаровидным графитом для отливок» (марки) - М.: Госстандарт, 1985 - прототип.
2. ГОСТ 3443-77 «Отливки из чугуна с различной формой графита (методы определения структуры). - М.: Изд-во «Госстандарт», 1977.
3. Чугун (справочник). /Под ред. А.Д.Шермана и А.А.Жукова - М.: Металлургия, 1991.
4. Высококачественные чугуны для отливок. /Под ред. Н.Н.Александрова - М.: Машиностроение, 1982.
5. A.M.Зборщик, В.А.Курганов, Ю.Б.Бычков и др. Доменный чугун с шаровидным графитом для крупных отливок. - М.: Машиностроение, 1995.
6. Я.Е.Гольдштейн, В.Г.Мизин. Модифицирование и микролегирование чугунов и стали. - М.: Металлургия, 1986.
7. В.М.Воздвиженский, В.А.Грачев, В.В.Спасский. Литейные сплавы и технология их плавки в машиностроении, - М.: Машиностроение, 1984.
8. А.Ф.Ланда. Основы получения чугуна повышенного качества. - М.: МАШГИЗ, 1960.
9. В.И.Архаров. Теория микролегирования сплавов. - М.: Машиностроение, 1975.
10. Сб. статей «Свойства и особенности производства модифицированного чугуна». - М.: изд-е ЦНИИТМАШ, 1976.
11. Федеральная целевая научно-техническая программа «Ядерная и радиационная безопасность России» (на 2000-2007 гг.). - М., 2000.
12. Федеральная целевая научно-техническая программа «Обращение с радиоактивными отходами и отработавшими ядерными материалами, их утилизация и захоронение» (на 1998-2007 гг.). - М., 1998.
название | год | авторы | номер документа |
---|---|---|---|
ЛИСТОВАЯ ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ ВЫСОКОНАГРУЖЕННЫХ КОНСТРУКЦИЙ КОНТЕЙНЕРНОЙ ТЕХНИКИ АТОМНОЙ И ТЕРМОЯДЕРНОЙ ЭНЕРГЕТИКИ | 2009 |
|
RU2413782C1 |
СТАЛЬ | 1993 |
|
RU2108405C1 |
СТАЛЬ ДЛЯ ВЫСОКОНАДЕЖНОГО КОНТЕЙНЕРНОГО ОБОРУДОВАНИЯ ПО ТРАНСПОРТИРОВКЕ И ХРАНЕНИЮ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ | 2003 |
|
RU2232203C1 |
СТАЛЬ | 1993 |
|
RU2109079C1 |
ТРУБНАЯ ЗАГОТОВКА ИЗ ЛЕГИРОВАННОЙ, МОЛИБДЕНСОДЕРЖАЩЕЙ СТАЛИ | 2006 |
|
RU2333967C1 |
ТРУБНАЯ ЗАГОТОВКА ИЗ ЛЕГИРОВАННОЙ МАРГАНЕЦСОДЕРЖАЩЕЙ СТАЛИ | 2006 |
|
RU2336319C1 |
КОЛОКОЛОЛИТЕЙНАЯ БРОНЗА | 2009 |
|
RU2430984C2 |
Чугун для гильз цилиндров двигателей | 1989 |
|
SU1659516A1 |
Жаропрочный сплав | 2019 |
|
RU2700347C1 |
ВЫСОКОПРОЧНАЯ ЛИТЕЙНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ | 2010 |
|
RU2445397C1 |
Изобретение относится к черной металлургии, в частности к производству крупногабаритных чугунных отливок. Может использоваться в атомном энергомашиностроении при производстве контейнеров для транспортировки и длительного хранения отработавшего ядерного топлива и других радиоактивных материалов. Высокопрочный чугун содержит, мас.%: углерод 3,3-3,8; кремний 1,5-2,6; марганец 0,1-0,4; ванадий 0,02-0,06; ниобий 0,02-0,05; магний 0,04-0,06; кальций 0,001-0,008; сера 0,005-0,01; фосфор 0,005-0,01; железо - остальное. Суммарное содержание V+Nb не превышает 0,08 мас.%, а суммарное содержание S+P не превышает 0,015 мас.%. Чугун обладает пониженной склонностью к дендритной ликвации и структурной анизотропии, и высокими физико-механическими, технологическими и эксплуатационными характеристиками. 2 табл.
Высокопрочный чугун для корпусных конструкций контейнеров по транспортировке и хранению радиоактивных отходов, содержащий углерод, кремний, марганец, серу, фосфор и железо, отличающийся тем, что он дополнительно содержит ванадий, ниобий, магний и кальций при следующем соотношении компонентов, мас.%:
при этом суммарное содержание V+Nb не превышает 0,08 мас.%, суммарное содержание S+P не превышает 0,015 мас.%.
ВЫСОКОПРОЧНЫЙ ЧУГУН | 2006 |
|
RU2298048C1 |
Высокопрочный чугун | 1984 |
|
SU1157115A1 |
Чугун | 1985 |
|
SU1261968A1 |
Способ крашения тканей | 1922 |
|
SU62A1 |
Приспособление для разматывания лент с семенами при укладке их в почву | 1922 |
|
SU56A1 |
Авторы
Даты
2009-10-27—Публикация
2008-01-09—Подача