ИЗНОСОСТОЙКИЙ ЧУГУН Российский патент 2012 года по МПК C22C37/04 

Описание патента на изобретение RU2451100C1

Изобретение относится к области литейного производства и, в частности, к износостойким чугунам для производства деталей машин и оборудования, подвергающихся ударно-абразивному износу, например мелющих шаров рудоразмольных мельниц.

Известен износостойкий чугун с шаровидным графитом, содержащий углерод, кремний, марганец, хром, никель, бор, ванадий, медь, алюминий, церий, магний, кальций, железо при следующем соотношении компонентов, мас.%:

углерод 2,2-3,2; кремний 0,5-3,0; марганец 0,2-3,0; хром 3,0-6,4 никель 2,0-4,0; бор 0,2-0,4; ванадий 0,2-0,8; медь 0,2-0,8; алюминий 0,1-0,4; церий 0,03-0,2; магний 0,02-0,1; кальций 0,05-0,2; железо остальное

(RU 2384641, С22С 37/04, опубликовано 20.03.2010).

Наиболее близким по технической сущности и достигаемому техническому результату является износостойкий чугун с шаровидным графитом, содержащий углерод, кремний, марганец, никель, бор, ванадий, медь, алюминий, церий, магний, молибден, кальций, железо при следующем соотношении компонентов, мас.%:

углерод 2,8-4,2; кремний 1,5-3,5; марганец 0,2-1,6; никель 2,0-5,0; бор 0,2-0,4; ванадий 0,2-0,8; медь 0,2-0,8; алюминий 0,1-0,5; церий 0,02-0,2; магний 0,02-0,1; молибден 4,0-12,0; кальций 0,06-0,8; железо остальное

(RU 2416660, С22С 37/04, опубликовано 20.04.2011).

Недостатком известных износостойких чугунов, содержащих прочные карбиды молибдена и мартенсит, является недостаточная ударно-абразивная стойкость литых изделий, выполненных из указанных чугунов, работающих при повышенных температурах.

Задачей и техническим результатом изобретения является износостойкий чугун с шаровидным графитом, обладающий повышенной твердостью и ударно-абразивной стойкостью в литом состоянии, в том числе при эксплуатации при повышенных температурах.

Технический результат достигается тем, что износостойкий чугун с шаровидным графитом содержит углерод, кремний, марганец, никель, бор, ванадий, медь, алюминий, церий, магний, молибден, кальций, вольфрам, серу, фосфор и железо при следующем соотношении компонентов, мас.%:

углерод 3,0-4,6; кремний 1,5-3,5; марганец 0,2-0,8; никель 3,0-5,0; бор 0,06-0,40; ванадий 0,2-0,8; медь 0,2-0,8; алюминий более 0,5-0,7; церий 0,02-0,20; магний 0,02-0,08; молибден 4,0-6,0; кальций 0,06-0,80; вольфрам 4,0-6,0; сера 0,01-0,03; фосфор 0,02-0,08; железо остальное,

причем в структуре чугуна углерод содержится в свободном состоянии в виде включений графита шаровидной формы в количестве 0,5-2,2% и в связанном состоянии в виде карбидной фазы в количестве 0,4-3,7%.

Наличие в составе чугуна по изобретению одновременно молибдена и вольфрама в заявленных концентрациях дает преимущественное образование твердых и прочных карбидов молибдена типа Мо2С и очень твердых карбидов вольфрама типа W2C, повышающих твердость и ударно-абразивную стойкость чугуна в литом состоянии. При этом в значительной мере подавляется образование менее твердых и хрупких карбидов типа МоС и W2C.

Наличие в металлической основе предложенного чугуна включений графита шаровидной формы в количестве менее 0,5% способствует образованию аустенитной структуры чугуна, которая по сравнению с мартенситной структурой менее износостойкая в условиях ударно-абразивного изнашивания. Увеличение количества включений графита шаровидной формы более 2,2% способствует образованию трооститной структуры чугуна, у которой износостойкость меньше, чем у аустенитной структуры.

Наличие в металлической основе предложенного чугуна связанного углерода в количестве менее 0,4% способствует образованию аустенитной структуры чугуна, которая по сравнению с мартенситной структурой менее износостойкая в условиях ударно-абразивного изнашивания. Увеличение концентрации связанного углерода более 3,7% способствует образованию большого количества твердых карбидов хрома и молибдена, что ведет к существенному снижению прочности и, соответственно, ударно-абразивной стойкости чугуна.

Наличие серы и фосфора в заявленных концентрациях способствует образованию их соединений с бором, имеющих достаточно широкий температурный интервал кристаллизации, что снижает долю бора, приходящуюся на железо-хромистые боридные эвтектики, снижающих прочность и износостойкость чугуна. При этом в значительной степени нивелируется негативное влияние этих компонентов на физико-механические характеристики литого чугуна.

Получение износостойкого чугуна по изобретения иллюстрирует следующий пример. Плавку чугуна проводили в дуговой электропечи с использованием стандартных шихтовых материалов. Легирующие элементы - никель, медь, молибден, вольфрам, вводили в металлозавалку. Фосфор и сера присутствовали в исходном железе. После расплавления шихты и перегрева чугуна до 1480-1520°С на зеркало расплава вводили марганец, ванадий, бор и кремний. Затем присаживали алюминий и кальций (в виде 20%-ного силикокальция). Магний в составе сфероидизирующей присадки, а также церий в виде ферроцерия помещают на дно разливочного ковша перед выпуском жидкого металла из печи. Содержание серы и фосфора поддерживали с использованием известных приемов - составом шлака или вакуумированием.

В таблице 1 приведен химический состав известного чугуна и чугуна по изобретению. В таблице 2 приведены количество включений графита и карбидов, значение твердости и износостойкости в условиях ударно-абразивного износа.

Обеспечение достижения технического результата иллюстрируют данные таблицы 2: это более высокая твердость (64-70 HRC) и относительная износостойкость (2,5-3,8) чугуна по изобретению в литом состоянии в сравнении с известным чугуном.

Преимущество чугуна по изобретению по сравнению с известным чугуном имеет место при температурах испытаний до 300-400°С.

Износостойкость в условиях ударно-абразивного изнашивания определяли по потере массы образцов (18×18 мм) после проведения 12 циклов испытания длительностью 25 минут каждая. Испытания на ударно-абразивный износ проводили на лабораторной мельнице. В качестве абразива использовали кварцевый песок определенной зернистости. За эталон принимали износ образцов, изготовленных из стали 20.

Объемное количество карбидной фазы и включений графита в структуре чугуна подсчитывали планиметрическим методом в трех полях и методом случайных секущих при 500-кратном увеличении на микроскопе МИМ-8.

Применение износостойкого чугуна с шаровидным графитом по изобретению для отливок бронефутеровок и шаров рудоразмольных мельниц позволяет существенно (на 20-25%) увеличить их срок эксплуатации.

Таблица 1 Номер образца Чугун Содержание химических элементов, мас.% С Si Мn Ni В V Сu Аl Се Mg Mo Са S Р W 1 Предлагаемый 3,0 1,5 0,2 3,0 0,06 0,2 0,2 0,1 0,02 0,02 4,0 0,06 0,01 0,02 4,0 3,8 2,5 0,5 4,0 0,23 0,5 0,5 0,4 0,11 0,05 5,0 0,43 0,02 0,05 5,0 3 4,6 3,5 0,8 5,0 0,40 0,8 0,8 0,7 0,20 0,08 6,0 0,80 0,03 0,08 6,0 4 Прототип 3,4 2,5 0,6 4,0 0,3 0,5 0,5 0,25 0,11 0,06 8,0 0,12 - - - 5 Предлагаемый 3,0 1,5 0,2 3,0 0,06 0,2 0,2 0,1 0,02 0,02 4,0 0,06 0,01 0,02 4,0 6 3,8 2,5 0,5 4,0 0,23 0,5 0,5 0,4 0,11 0,05 5,0 0,43 0,02 0,05 5,0 7 4,6 3,5 0,8 5,0 0,40 0,8 0,8 0,7 0,20 0,08 6,0 0,80 0,03 0,08 6,0 8 Прототип 3,4 2,5 0,6 4,0 0,3 0,5 0,5 0,25 0,11 0,06 8,0 0,12 - - -

Таблица 2 Номер образца Чугун* Количество включений графита, % Количество карбидов* (W2C+Мо2С), % Твердость HRC Коэффициент относительной стойкости в условиях ударно-абразивного износа 1 Предлагаемый 0,5 36 64 2,6 2 0,5 38 66 3,4 3 0,5 40 68 3,8 4 Прототип 0,5 33 63 2,6 5 Предлагаемый 2,2 34 62 2,5 6 2,2 36 64 3,2 7 2,2 38 66 4,0 8 Прототип 2,2 40 62 2,4 * - количество карбидов предлагаемого чугуна состоит из суммы карбидов вольфрама W2C и карбидов молибдена Мо2С

Похожие патенты RU2451100C1

название год авторы номер документа
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Гулак Ольга Николаевна
  • Находкин Валерий Михайлович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Олейников Дмитрий Владиславович
  • Зайчикова Анастасия Михайловна
  • Чижов Николай Владимирович
RU2451099C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Гулак Ольга Николаевна
  • Находкин Валерий Михайлович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Олейников Дмитрий Владиславович
  • Зайчикова Анастасия Михайловна
  • Морозов Александр Борисович
RU2448183C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Олейников Дмитрий Владиславович
  • Тимофеев Александр Михайлович
  • Данилова Анастасия Павловна
  • Лобов Владимир Николаевич
  • Дуб Алексей Владимирович
  • Карапоткин Вячеслав Васильевич
RU2465362C1
ИЗНОСОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ 2013
  • Гущин Николай Сафонович
  • Дуб Алексей Владимирович
  • Дурынин Виктор Алексеевич
  • Нуралиев Фейзулла Алибала Оглы
  • Лучинина Галина Евгеньевна
  • Небогаткина Антонина Александровна
  • Небогаткин Владимир Михайлович
  • Тахиров Асиф Ашур Оглы
  • Минина Любовь Марковна
  • Стариков Валерий Владимирович
RU2511213C1
ИЗНОСОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ 2013
  • Гущин Николай Сафонович
  • Дуб Алексей Владимирович
  • Дурынин Виктор Алексеевич
  • Нуралиев Фейзулла Алибала Оглы
  • Лучинина Галина Евгеньевна
  • Небогаткина Антонина Александровна
  • Небогаткин Владимир Михайлович
  • Тахиров Асиф Ашур Оглы
  • Минина Любовь Марковна
  • Стариков Валерий Владимирович
RU2526507C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Полонский-Буслаев Александр Александрович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Юрьева Светлана Игоревна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Терешин Денис Игоревич
  • Лобов Дмитрий Владимирович
  • Гущин Алексей Николаевич
  • Семенова Татьяна Николаевна
RU2416660C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Гурьева Елена Васильевна
  • Находкин Валерий Михайлович
  • Морозов Александр Борисович
  • Гулак Ольга Николаевна
  • Чижов Николай Владимирович
  • Петрова Галина Петровна
RU2445388C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Гурьева Елена Васильевна
  • Находкин Валерий Михайлович
  • Морозов Александр Борисович
  • Гулак Ольга Николаевна
  • Чижов Николай Владимирович
  • Петрова Галина Петровна
RU2445389C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Полонский-Буслаев Александр Александрович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Юрьева Светлана Игоревна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Терешин Денис Игоревич
  • Лобов Дмитрий Владимирович
  • Гущин Алексей Николаевич
  • Семенова Татьяна Николаевна
RU2419666C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2009
  • Гущин Николай Сафонович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Лобов Дмитрий Владимирович
  • Терешин Денис Игоревич
RU2401317C1

Реферат патента 2012 года ИЗНОСОСТОЙКИЙ ЧУГУН

Изобретение относится к области литейного производства, в частности к износостойким чугунам для производства деталей машин и оборудования, подвергающихся ударно-абразивному износу. Износостойкий чугун с шаровидным графитом содержит следующие компоненты, мас.%: углерод 3,0-4,6; кремний 1,5-3,5; марганец 0,2-0,8; никель 3,0-5,0; бор 0,06-0,40; ванадий 0,2-0,8; медь 0,2-0,8; алюминий более 0,5-0,7; церий 0,02-0,20; магний 0,02-0,08; молибден 4,0-6,0; кальций 0,06-0,80; сера 0,01-0,03; фосфор 0,02-0,08; вольфрам 4,0-6,0; железо остальное. Техническим результатом является повышение стойкости литого чугуна с шаровидным графитом в условиях ударно-абразивного износа. 2 табл.

Формула изобретения RU 2 451 100 C1

Износостойкий чугун с шаровидным графитом, содержащий углерод, кремний, марганец, никель, бор, ванадий, медь, алюминий, церий, магний, молибден, кальций и железо, отличающийся тем, что он дополнительно содержит вольфрам, серу и фосфор при следующем соотношении компонентов, мас.%:
углерод 3,0-4,6 кремний 1,5-3,5 марганец 0,2-0,8 никель 3,0-5,0 бор 0,06-0,40 ванадий 0,2-0,8 медь 0,2-0,8 алюминий более 0,5-0,7 церий 0,02-0,20 магний 0,02-0,08 молибден 4,0-6,0 вольфрам 4,0-6,0 кальций 0,06-0,80 сера 0,01-0,03 фосфор 0,02-0,08 железо остальное,


причем в структуре чугуна углерод содержится в свободном состоянии в виде включений графита шаровидной формы в количестве 0,5-2,2% и в связанном состоянии - в виде карбидной фазы в количестве 0,4-3,7%.

Документы, цитированные в отчете о поиске Патент 2012 года RU2451100C1

ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Полонский-Буслаев Александр Александрович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Юрьева Светлана Игоревна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Терешин Денис Игоревич
  • Лобов Дмитрий Владимирович
  • Гущин Алексей Николаевич
  • Семенова Татьяна Николаевна
RU2419666C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Полонский-Буслаев Александр Александрович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Юрьева Светлана Игоревна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Терешин Денис Игоревич
  • Лобов Дмитрий Владимирович
  • Гущин Алексей Николаевич
  • Семенова Татьяна Николаевна
RU2416660C1
Двухфазный генератор с плавным регулированием разности фаз 1981
  • Егорычев Александр Николаевич
SU1029098A1
JP 60247036 А, 06.12.1985
ЭЛЕКТРОЛИТИЧЕСКАЯ ВАННА 1927
  • Векшинский С.А.
SU9552A1

RU 2 451 100 C1

Авторы

Гущин Николай Сафонович

Нуралиев Фейзулла Алибала Оглы

Олейников Дмитрий Владиславович

Тимофеев Александр Михайлович

Свирин Владимир Ильич

Лобов Владимир Николаевич

Дуб Алексей Владимирович

Карапоткин Вячеслав Васильевич

Петрова Галина Петровна

Даты

2012-05-20Публикация

2011-06-20Подача