Микроэлектромеханический датчик давления Российский патент 2019 года по МПК G01L7/08 G01L19/06 

Описание патента на изобретение RU2706447C1

Изобретение относится к измерительным приборам в области микросистемной техники, в частности к микродатчикам давления.

Учет как внешних, так и внутренних факторов, нарушающих точность измерения требуемых физических параметров, является критичным при создании высокоточных микродатчиков. Особое внимание уделяется операции по корпусированию чувствительного элемента (далее - ЧЭ), ввиду важной роли, которую она играет в конечных параметрах готового прибора. Среди многих предложенных концепций по механической развязке ЧЭ с. корпусом датчика наиболее устойчивые решения получило направление, согласно которому упаковка ЧЭ может быть выполнена гораздо эффективнее, если требуемые параметры по согласованию конструкционных элементов микродатчика уже заложены в буферном слое или опорном кристалле.

Известен микродатчик давления с опорным кристаллом, описанный в статьях [Hsieh С.-С., Hung С.-С., Li Y.-II. Investigation of a pressure sensor with temperature compensation using two concentric wheatstone-bridge circuits // Modern mechanical engineering. 2013. Vol. 3. P. 104-113; Lee K.-W., Wise K. D. SENSIM: a simulation program for solid-state pressure sensors // IEEE transactions on electron devices. 1982. Vol. ED-29. No. 1. P. 34-41] и патенте US 4129042 (November 1977). Микродатчик содержит опорный кристалл, который состоит из нескольких пластин кремния или боросиликатных стекол, соединенных при помощи электростимулированной (анодной) сварки и объединенных с кристаллом ЧЭ. Существенным недостатком построения ЧЭ микродатчика давления на массивном промежу точном слое кремния или боросиликатного стекла является требование, что все входящие в ЧЭ и опорный кристалл слои должны иметь согласование между тепловыми коэффициентами расширения (ТКР) материала. При этом операция анодного соединения двух кристаллов приводит к преднапряженному состоянию в мембране ЧЭ, что негативно сказывается на характеристиках тензорезисторов и приводит к начальной разбалансировке моста в электрической схеме, в которую включается ЧЭ. Также сказывается присутствие дефектов в опорном кристалле, которые могут привести к изначальной деформации (короблению) мембраны ЧЭ при электростимулированной спайке слоев.

Наиболее близкими по технической сущности к заявленному техническому решению являются микродатчики, содержащие опорные кристаллы гофрированной формы, описанные в книге [Beeby S., Ensel G., Kraft М., White N. MEMS mechanical sensors. Lon.: Artech house MEMS, library. 2004. 281 р.], статье [Offereins H. L., Sandmaier H. Novel stress free assembly technique for micromechanical devices // Microsystem technologies 90. Berlin. September 10-13. 1990. P. 515-520] и патенте SU 1544120 A1, опубликованном от 15.02.1994 (прототип). Микродатчик содержит опорный кристалл, выполненный из монокристаллического кремния, с обеих сторон кристалла сформированы канавки. Эти углубления представляют собой термокомпенсационные элементы. Опорный кристалл выполняет роль буферного слоя и является узлом развязки, обеспечивающим существенное уменьшение передачи механических напряжений от корпуса датчика к ЧЭ. Недостатком такой конструкции является сложность в изготовлении в части получения заданных кристаллографических плоскостей развитого рельефа поверхности опорного кристалла с помощью жидкостного травления с обеих сторон и, соответственно, увеличение стоимости изготавливаемой конструкции, а также недостаточная надежность из-за возникновения эффекта хрупкости при монтаже в областях высокой дефектности (пересечение двух и более кристаллофафических плоскостей в конструкции опорного кристалла). Для случая, когда вместо набора кольцевых термокомпенсаторов используется набор элементов, располагающихся на контуре в форме квадрата, поскольку размеры мембраны ЧЭ могут варьироваться в широком диапазоне, возникает рассогласование по кристаллографическим направлениям среди термокомпенсационных элементов.

Задачей изобретения является разработка микроэлектромеханического датчика давления, конструкция которого позволяет осуществить механическую изоляцию ЧЭ микродатчика для уменьшения механических напряжений в ЧЭ, передающихся от корпуса прибора, вызванных его температурным расширением (сжатием).

Техническим результатом предлагаемого решения является повышение надежности и стабильности работы, разрешения выходных характеристик и точности микродатчика давления.

Технический результат достигается тем, что разработанный микроэлектромеханический датчик давления содержит корпус с приемным портом, чувствительный элемент, мембрана которого расположена на опорном кристалле квадратной формы, в котором выполнено сквозное отверстие и термокомпенсационпые элементы. Опорный кристалл и мембрана чувствительного элемента выполнены из монокристаллического кремния. Опорный кристалл сопряжен с корпусом датчика посредством соединительной трубки с помощью стекловидного припоя или одной из разновидностей эпоксидных смол. Микроэлектромеханический датчик давления отличается тем, что термокомпенсационпые элементы выполнены планарно в виде вытравленных углублений прямоугольного сечения в опорном кристалле на поверхности противоположной расположению чувствительного элемента, при этом центральный элемент имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, элемент, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга. При этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла за контуром круга.

Предлагаемое техническое решение поясняют следующие фигуры.

На фигуре 1 представлен схематичный вид в разрезе микроэлектромеханического датчика давления.

На фигуре 2 - вид опорного кристалла.

На фигуре 3 - вид опорного кристалла снизу и форма термокомпенсационных элементов.

На фигурах введены следующие обозначения:

1 - опорный кристалла из монокристаллического кремния;

2 - сквозное отверстие в опорном кристалле для поступающего давления;

3 - центральный термокомпенсациоиный элемент;

4 - периферийный термокомпенсационный элемент;

5 - мембрана чувствительного элемента микродатчика давления из монокристаллического кремния;

6 - соединительная трубка;

7 - корпус;

8 - приемный порт для поступающего давления. Устройство работает следующим образом.

Мембрана чувствительного элемента микродатчика давления 5 располагается на опорном кристалле из монокристаллического кремния 1, центральная часть которого закрепляется с помощью соединительной трубки 6 в корпусе 7 посредством стекловидного припоя или одной из разновидностей эпоксидных смол.

При этом область контакта соединительной трубки 6 не превышает 20-40% от нижней грани опорного кристалла 1, уменьшение области контакта опорного кристалла с корпусом способствует снижению области распространения деформаций. На опорном кристалле 1 планарно с одной стороны поверхности (противоположной поверхности на которой расположен ЧЭ) выполнены термокомпенсационные элементы 3-4 в виде вытравленных углублений прямоугольного сечения. Давление газа, подаваемое через приемный порт 8, соединительную трубку 6 и сквозное отверстие 2, деформирует мембрану 5, после чего происходит изменение выходного сигнала с первичной схемы ЧЭ. В условиях изменения температуры сам датчик и все входящие в него конструкционные элементы подвергается линейному расширению (сжатию) во всех направлениях. Это приводит к возникновению неоднородных механических напряжений в чувствительном элементе. Влияние температуры наиболее критично в плоскости мембраны датчика 5, то есть в направлении <100> (проходящего вдоль одной из сторон опорного кристалла 1), согласно обозначению, индексов Миллера. В мембране 5 наблюдается поле деформаций на различных участках. Для компенсации подобных эффектов в опорном кристалле выполнены термокопенсационные элементы 3-4, учитывающие анизотропность кристаллографической решетки кремния. С этой целью элемент 3 имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, а элемент 4, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла 1, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга, при этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла 1 за контуром круга - в направлении наибольшей плотности элементарной ячейки кремния. Вырезы в форме периферийного термокомпенсационного элемента 4 выполнены таким образом, чтобы при термическом воздействии плоскость (110) имела бы симметричное расхождение относительно других кристаллографических плоскостей направлений <100> , <010>, что также будет справедливо для зеркальной плоскости отражения. Опорный кристалл 1 позволяет релаксировать возникающие механические напряжения за счет термокомпенсационных элементов 3-4. В отличие от существующего прототипа достаточно выполнить одну модификацию поверхности опорного кристалла 1, то есть требуется топологическое изменение рельефа только с одной стороны, чтобы повысить прочностные характеристики, надежность и стабильность работы микродатчика.

Микроэлектромеханический датчик давления благодаря конструкции опорного кристалла и форме термокомпенсационных элементов, входящих в его состав, позволяет получить выходную характеристику с компенсацией температурного дрейфа.

Похожие патенты RU2706447C1

название год авторы номер документа
МИКРОЭЛЕКТРОМЕХАНИЧЕСКИЙ ВАКУУММЕТР 2021
  • Волкова Екатерина Ивановна
  • Попков Сергей Алексеевич
RU2761072C1
ЧАСТОТОРЕЗОНАНСНЫЙ ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДИФФЕРЕНЦИАЛЬНОГО ДАВЛЕНИЯ И ЧАСТОТОРЕЗОНАНСНЫЙ ДАТЧИК ДИФФЕРЕНЦИАЛЬНОГО ДАВЛЕНИЯ 2017
  • Поляков Владимир Борисович
  • Поляков Александр Владимирович
  • Одинцов Михаил Александрович
RU2690699C1
ЧАСТОТОРЕЗОНАНСНЫЙ ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ДАТЧИКА ДИФФЕРЕНЦИАЛЬНОГО ДАВЛЕНИЯ 2018
  • Поляков Владимир Борисович
  • Поляков Александр Владимирович
  • Одинцов Михаил Александрович
RU2679640C1
КРЕМНИЕВЫЙ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ СОКОЛОВА 2006
  • Соколов Леонид Владимирович
RU2327125C2
СПОСОБ ИЗГОТОВЛЕНИЯ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ДАТЧИКА ДАВЛЕНИЯ И ДАТЧИК ДАВЛЕНИЯ НА ЕГО ОСНОВЕ 2009
  • Белозубов Евгений Михайлович
  • Васильев Валерий Анатольевич
  • Чернов Павел Сергеевич
RU2398195C1
ТЕНЗОРЕЗИСТОРНЫЙ ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ 2009
  • Белозубов Евгений Михайлович
  • Васильев Валерий Анатольевич
  • Васильева Светлана Александровна
  • Громков Николай Валентинович
  • Тихонов Анатолий Иванович
RU2391640C1
МИКРОВАКУУММЕТР 2021
  • Волкова Екатерина Ивановна
  • Попков Сергей Алексеевич
RU2774181C1
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ДЛЯ ПРЕЦИЗИОННЫХ ИЗМЕРЕНИЙ 2012
  • Белозубов Евгений Михайлович
  • Васильев Валерий Анатольевич
  • Хованов Дмитрий Михайлович
  • Чернов Павел Сергеевич
RU2516375C1
МИКРОЭЛЕКТРОННЫЙ ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ АБСОЛЮТНОГО ДАВЛЕНИЯ 2007
  • Данилова Наталья Леонтьевна
  • Панков Владимир Валентинович
  • Суханов Владимир Сергеевич
RU2362133C1
МИКРОДАТЧИК ДАВЛЕНИЯ 1991
  • Егиазарян Э.Л.
RU2010195C1

Иллюстрации к изобретению RU 2 706 447 C1

Реферат патента 2019 года Микроэлектромеханический датчик давления

Изобретение относится к измерительным приборам в области микросистемной техники. Датчик давления содержит корпус, чувствительный элемент, мембрана которого расположена на опорном кристалле, в котором выполнено сквозное отверстие и гермокомпенсационные элементы. Опорный кристалл и мембрана чувствительного элемента выполнены из монокристаллического кремния. Опорный кристалл сопряжен с корпусом датчика посредством соединительной трубки. Согласно изобретению термокомпенсационные элементы выполнены планарно в виде вытравленных углублений прямоугольного сечения в опорном кристалле на поверхности, противоположной расположению чувствительного элемента, при этом центральный элемент имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, элемент, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга. При этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла за контуром круга. Изобретение обеспечивает повышение надежности и стабильности работы, разрешения выходных характеристик и точности микродатчика давления. 3 ил.

Формула изобретения RU 2 706 447 C1

Микроэлектромеханический датчик давления, состоящий из корпуса с приемным портом, опорного кристалла квадратной формы из монокристаллического кремния, в котором выполнено сквозное отверстие и термокомпенсационные элементы, сопряженного с корпусом датчика посредством соединительной трубки с помощью стекловидного припоя или одной из разновидностей эпоксидных смол, и чувствительного элемента, мембрана которого выполнена из монокристаллического кремния и расположена на опорном кристалле, отличающийся тем, что термокомпенсационные элементы выполнены планарно в виде вытравленных углублений прямоугольного сечения в опорном кристалле на поверхности, противоположной расположению чувствительного элемента, при этом центральный элемент имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, элемент, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга, при этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла за контуром круга.

Документы, цитированные в отчете о поиске Патент 2019 года RU2706447C1

МИКРОЭЛЕКТРОННЫЙ ДАТЧИК 1988
  • Ваганов В.И.
SU1544120A1
Устройство электроконтактного измерения накопленной погрешности окружного шага зубчатых колес 1960
  • Литвинюк В.Ф.
SU133607A1
US 2014157905 A1, 12.06.2014
RU 25764376 С1, 27.09.2015
US 2015276526 A1, 01.10.2015
US 2017160154 A1, 08.06.2017.

RU 2 706 447 C1

Авторы

Волкова Екатерина Ивановна

Попков Сергей Алексеевич

Даты

2019-11-19Публикация

2019-03-19Подача