Изобретение относится к области формирования в цифровом виде изображения микроструктуры фазового состава на поверхности реального физического объекта, исследуемого путем использования сканирующей микроскопии.
Известен способ количественного анализа и испытаний минеральных фаз и, в частности, автоматической идентификации и количественного анализа одночастичных минеральных фаз на основе анализа энергетического спектра с помощью сканирующего электронного микроскопа. Способ включает в себя следующие этапы: изготовление мишени из исследуемого материала и ее нанесение на мембранный углерод, размещение на платформе, получение изображений с обратным рассеянием, установку параметров сканирующего электронного микроскопа, получение изображения с коэффициентом контрастности отдельных гранул, выполнение энергетического спектрального сканирования поверхности и создания базы данных по распознаванию энергетического спектра минерального сырья (патент CN 108318515; МПК G01N 23/22; 2018 год).
Однако, недостатком известного способа является невозможность определения фаз гетерогенной системы. Использование известного способа обеспечивает возможность определения фазы только гомогенной системы.
Известен способ формирования образного изображения поверхности нанообъекта в сканирующем туннельном микроскопе, заключающийся в том, что поверхность исследуемого вещества сканируют металлической иглой в режиме постоянного тока, для чего в каждой точке сканирования производят вертикальное перемещение иглы относительно исследуемой поверхности так, чтобы туннельный ток в каждой точке сканирования равнялся величине туннельного тока в первой точке сканирования. Их экспериментальной топографии поверхности с нанообъектами на подложке вычитают плоскость, параллельную поверхности подложки, которая выше исходных шероховатостей подложки, но ниже поперечного радиуса нанообъекта. Полученное изображение масштабируют путем умножения на коэффициент больше единицы (патент RU 2555492; МПК G10Q 60/10, B82Y 35/00; 2015 год).
Однако, недостатком известного способа является низкая точность изображения за счет получения возможности формирования только топографии поверхности исследуемого объекта.
Наиболее близким к заявляемому способу является способ изучения структуры поверхностных слоев и микрогеометрии поверхности исследуемого материала с использованием металлографии с помощью растрового электронного микроскопа и сканирующего зондового микроскопа. Для получения изображения поверхности обработанных образцов использовали растровый электронный микроскоп путем детектирования вторичных электронов в поле ускоряющего напряжения. Организация цифрового образа 2D-изображения осуществлялась при помощи контроллера ввода изображения с растрового электронного микроскопа в персональный компьютер. Для получения 3D-изображения поверхности исследуемых образцов использовался сканирующий туннельный микроскоп. Для преобразования 2D-изображения с растрового электронного микроскопа в 3D-изображение с последующей его обработкой использовался пакет программ “Scan Master”(В.П. Строшков, В.А. Пшеничников, В.Л. Кожевников “Высокоточное электрохимическое формообразование сложнопрофильного инструмента для деталей машин ”, Екатеринбург: Изд. УрО РАН, 2005 г., стр. 54-55).
Однако, недостатком известного способа является низкая точность за счет невысокой контрастности изображения.
Таким образом, перед авторами стояла задача разработать способ формирования изображения микроструктуры фазового состава на поверхности объекта, обеспечивающего высокую точность за счет улучшения контрастности получаемого изображения.
Поставленная задача решена в способе формирования изображения микроструктуры фазового состава на поверхности объекта, включающем эмиссию электронов с поверхности исследуемого объекта в растровом электронном микроскопе, их сбор и регистрацию для построения двухмерного изображения объекта в цифровой форме, повторное сканирование поверхности исследуемого объекта зондом измерительной головки сканирующего зондового микроскопа для построения трехмерного изображения объекта в цифровой форме, в котором повторное сканирование осуществляют зондом атомно-силового микроскопа, при этом осуществляют преобразование трехмерного изображения объекта в цифровой форме в двухмерное изображение в цифровой форме с применением данных, полученных при построении двухмерного изображения в цифровой форме с применением сбора и регистрации обратноотраженных электронов в растровом электронном микроскопе в режиме композиционного контраста.
В настоящее время из патентной и научно-технической литературы не известен способ формирования изображения микроструктуры фазового состава на поверхности объекта путем использования эмиссии обратноотраженных электронов в растровом электронном микроскопе, работающем в режиме композиционного контраста, и повторного сканирования зондом атомно-силового микроскопа, при этом осуществляют преобразование трехмерного изображения объекта в цифровой форме в двухмерное изображение в цифровой форме с применением данных, полученных при построении двухмерного изображения в цифровой форме.
Как известно, при работе растрового электронного микроскопа крайне редко используется режим композиционного контраста в силу его малой эффективности. Ограничением при решении многих вопросов физического материаловедения является низкое разрешение в обратноотраженных электронах из-за большой глубины выхода анализируемых электронов от поверхности образца. При исследовании высокодисперсных систем с малым размером фаз, плохое разрешение по глубине приводит к размытию границ между фазами и анализу не только самой поверхности образца, но и приповерхностных слоев (Физическое металловедение / Под ред. Кана Р., Хаазена П. – Т. 1. Атомное строение металлов и сплавов: Пер. с англ. – М.: Металлургия, 1987. 640 с.). Тем не менее, как подтвердили исследования, проведенные автором предлагаемого технического решения, при создании определенных условий построения изображения исследуемого объекта в цифровой форме именно режим композиционного контраста в отличие от режима топографического контраста может обеспечить высокую точность изображения, в частности микроструктуры поверхности, за счет получения высоко контрастного изображения. Сочетанное использование растрового и атомно-силового микроскопов в предлагаемом способе как раз и создает условия, позволяющие использовать преимущества режима композиционного контраста для улучшения контрастности изображения. Таким образом, совместное использование растровой электронной микроскопии и сканирующей зондовой атомно-силовой микроскопии позволяет значительно расширить диапазон кратности увеличения поверхности исследуемого объекта (от 103 до 106 раз) и сформировать изображение в цифровой форме с высокой степенью достоверности оригиналу.
Предлагаемый способ может быть осуществлен следующим образом. Необходимо отметить, контраст в обратноотраженных электронах (композиционный контраст) полезен при качественном и количественном анализе фазового состава исследуемой микроструктуры. Композиционный контраст основан на том, что выход обратноотраженных электронов является функцией атомного номера химического элемента. Однако на данный контраст влияет топография поверхности и поэтому для анализа сложных образцов с фазами, близкими по составу, или состоящими из элементов с близкими атомными номерами желательно иметь идеально ровную поверхность, например, поверхность шлифованного образца - шлифа. Исследуемый объект, имеющий шлифованную поверхность, устанавливают в область сканирования электронного пучка растрового электронного микроскопа и осуществляют первоначальное сканирование поверхности исследуемого объекта с использованием эмиссии отраженных электронов в режиме композиционного контраста, включая их сбор и регистрацию для построения двухмерного изображения объекта в цифровой форме. Процесс сбора и регистрации отраженных электронов зондом растрового электронного микроскопа, эмиссия которых происходит с поверхности объекта в результате неупругого взаимодействия с ней сфокусированного пучка электронов растрового микроскопа, осуществляют в режиме медленного сканирования. По сигналу разрешения сканирования растровый микроскоп перемещает сфокусированный пучок электронов в следующую точку поля сканирования поверхности объекта, и цикл измерения обратноотраженных электронов (сбор, регистрация и преобразование аналог/код) повторяется. Данные циклы измерения и сканирования продолжаются, пока не будет полностью закончен режим сканирования, заданный в растровом микроскопе. По данным, полученным с детектора, регистрирующего отраженные электроны, формируют в цифровом виде изображение микроструктуры фазового состава на поверхности объекта в 2D-формате. Затем проводят повторное сканирование поверхности исследуемого объекта , для чего закрепляют объект в сканере атомно-силового микроскопа . Над объектом устанавливают измерительную головку с зондом сканирующего микроскопа. Сканирование осуществляют в контактном режиме до полного окончания регламента, заданного в атомно-силовом микроскопе. По полученным данным формируют в цифровом виде изображение поверхности объекта в 3D-формате (см. фиг.2). Производят реконструкцию 3D-изображения, полученного с помощью атомно-силового микроскопа, в 2D-изображение микроструктуры поверхности объекта (см. фиг.3), используя для того данные 2D-изображения, полученные с помощью растрового электронного микроскопа в режиме композиционного контраста (см. фиг. 1). При этом процесс реконструкции в целом включает в себя, во-первых, формирование в цифровой форме 2D- изображения поверхности объекта на растровом электронном микроскопе, где пиксели имеют параметры: х и у – пространственные координаты, яркость соответствует композиционному контрасту; во-вторых, формирование в цифровой форме 3D- изображения поверхности объекта на атомно-силовом микроскопе, где x, y и z – пространственные координаты, яркость соответствует фазовому контрасту, пропорциональному пространственной координате z; в-третьих, на основе данных, полученных в цифровой форме 2D-изображения поверхности объекта на растровом электронном микроскопе, из 3D- изображения поверхности объекта, полученного на атомно-силовом микроскопе, формирование в цифровой форме фазового 2D-изображения микроструктуры поверхности объекта, где пиксели имеют параметры: х и у – пространственные координаты, а z соответствует яркости композиционного контраста 2D-изображения поверхности объекта на растровом электронном микроскопе.
Предлагаемое техническое решение иллюстрируется примером конкретного исполнения с формированием в цифровом виде изображения поверхности микроструктуры твердого сплава КНТ12 и поясняется следующими фигурами.
На фиг. 1 представлено 2D-изображение микроструктуры поверхности шлифа твердого сплава КНТ12, полученного с применением сбора и регистрации отраженных электронов в растровом электронном микроскопе BS-301 Tesla в режиме композиционного контраста. По микроструктуре твердый сплав КНТ12 соответствует структуре типа ядро-оболочка, где ядро (TiC0.5N0.5) – темная фаза, коаксиальная оболочка (Ti1-xMoxC0.5N0.5) – серая фаза, металлическая связка (Ni – 25% масс. Mo) – светлая фаза и черная фаза – поры.
На фиг. 2 представлено 3D-изображение микроструктуры поверхности шлифа твердого сплава КНТ12, полученного на атомно-силовом микроскопе JSPM-5200 JEOI в режиме фазового контраста. Видны три фазы: более светлая оранжевая – самая твердая и высокая состава (TiC0.5N0.5), темная коричневая фаза – самая мягкая и низкая - металлическая связка (Ni – 25% масс. Mo), средняя по твердости и по цвету находится между твердой и мягкой – матрица образца состава (Ti1-xMoxC0.5N0.5).
На фиг. 3 представлено 2D-изображение микроструктуры поверхности шлифа твердого сплава КНТ12, полученное преобразованием 3D- изображения полученного на атомно-силовом микроскопе (см. фиг.2) с применением данных, полученных при построении 2D- изображения (см. фиг.1) с использованием растрового электронного микроскопа. Также видны три фазы: более светлая оранжевая – самая твердая и высокая состава (TiC0.5N0.5), темная коричневая фаза – самая мягкая и низкая - металлическая связка (Ni – 25% масс. Mo), средняя по твердости и по цвету находится между твердой и мягкой – матрица образца состава (Ti1-xMoxC0.5N0.5).
Сравнивая уровень детализации микроструктуры поверхности шлифа твердого сплава КНТ12 на фиг.1, фиг.2 и фиг. 3 можно утверждать, что на фиг. 3 она имеет значительно большее разрешение. Таким образом, заявленный способ позволяет сформировать изображение микроструктуры поверхности объекта с более высокой точностью за счет улучшения контрастности получаемого изображения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ТОПОГРАФИИ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2329490C1 |
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ТОПОГРАФИИ ПОВЕРХНОСТИ ОБЪЕКТА | 2009 |
|
RU2419089C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОФИЛЯ ВДОЛЬ ЛИНИИ СКАНИРОВАНИЯ И ПРОФИЛЯ ПОВЕРХНОСТИ ПО ИЗОБРАЖЕНИЮ, ПОЛУЧЕННОМУ С ЦИФРОВОГО УСТРОЙСТВА | 2021 |
|
RU2768691C1 |
СПОСОБ НАНЕСЕНИЯ НАНОМАРКИРОВОК НА ИЗДЕЛИЯ | 2008 |
|
RU2365989C1 |
Способ количественной трехмерной реконструкции поверхности образца в растровом электронном микроскопе | 2016 |
|
RU2657000C1 |
Способ распознавания объектов цифровой обработкой исходных изображений в градациях серого | 2023 |
|
RU2804304C1 |
СПОСОБ ФОРМИРОВАНИЯ ОБРАЗНОГО ИЗОБРАЖЕНИЯ ПОВЕРХНОСТИ НАНООБЪЕКТА В СКАНИРУЮЩЕМ ТУННЕЛЬНОМ МИКРОСКОПЕ | 2013 |
|
RU2555492C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ КЛЕТКИ | 2014 |
|
RU2569730C1 |
СПОСОБ ОБРАБОТКИ СИГНАЛОВ В СКАНИРУЮЩИХ УСТРОЙСТВАХ С ОСТРОСФОКУСИРОВАННЫМ ЭЛЕКТРОННЫМ ПУЧКОМ | 2019 |
|
RU2713090C1 |
АТОМНО-СИЛОВОЙ СКАНИРУЮЩИЙ ЗОНДОВЫЙ МИКРОСКОП, ИСПОЛЬЗУЮЩИЙ КВАЗИЧАСТИЦЫ | 2014 |
|
RU2563339C1 |
Использование: для формирования в цифровом виде изображения микроструктуры фазового состава на поверхности реального физического объекта, исследуемого путем использования сканирующей микроскопии. Сущность изобретения заключается в том, что осуществляют эмиссию электронов с поверхности исследуемого объекта в растровом электронном микроскопе, их сбор и регистрацию для построения двухмерного изображения объекта в цифровой форме, повторное сканирование поверхности исследуемого объекта зондом измерительной головки сканирующего зондового микроскопа для построения трехмерного изображения объекта в цифровой форме, при этом повторное сканирование осуществляют зондом атомно-силового микроскопа, при этом осуществляют преобразование трехмерного изображения объекта в цифровой форме в двухмерное изображение в цифровой форме с применением данных, полученных при построении двухмерного изображения в цифровой форме с применением сбора и регистрации обратноотраженных электронов в растровом электронном микроскопе в режиме композиционного контраста. Технический результат: обеспечение возможности сформировать изображение микроструктуры поверхности объекта с более высокой точностью за счет улучшения контрастности получаемого изображения. 3 ил.
Способ формирования изображения микроструктуры фазового состава на поверхности объекта, включающий эмиссию электронов с поверхности исследуемого объекта в растровом электронном микроскопе, их сбор и регистрацию для построения двухмерного изображения объекта в цифровой форме, повторное сканирование поверхности исследуемого объекта зондом измерительной головки сканирующего зондового микроскопа для построения трехмерного изображения объекта в цифровой форме, отличающийся тем, что повторное сканирование осуществляют зондом атомно-силового микроскопа, при этом осуществляют преобразование трехмерного изображения объекта в цифровой форме в двухмерное изображение в цифровой форме с применением данных, полученных при построении двухмерного изображения в цифровой форме с применением сбора и регистрации обратноотраженных электронов в растровом электронном микроскопе в режиме композиционного контраста.
В.П | |||
Строшков, В.А | |||
Пшеничников, В.Л | |||
Кожевников, Высокоточное электрохимическое формообразование сложнопрофильного инструмента для деталей машин, Екатеринбург: Изд | |||
УрО РАН, 2005 г., стр | |||
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба | 1919 |
|
SU54A1 |
Способ анализа диэлектриков | 1986 |
|
SU1409906A1 |
Способ количественного анализа примесей в металлах и полупроводниках | 1986 |
|
SU1368747A1 |
US 4564758 A, 14.01.1986 | |||
WO 9823946 A1, 04.06.1998 | |||
WO 9408232 A1, 14.04.1994. |
Авторы
Даты
2019-12-03—Публикация
2019-05-16—Подача