СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ БЕРЕГОЗАЩИТНОГО СООРУЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2019 года по МПК G01N21/00 G01B11/16 G01L5/10 E02B3/06 

Описание патента на изобретение RU2708340C2

Изобретение относится к способам контроля нарушения целостности берегозащитных сооружений, в частности, волноотбойных стен, состоящих, по меньшей мере, из одного или нескольких массивных блоков, в частности железобетонных, а также, блочных фундаментов инженерных сооружений с помощью волоконно-оптической контрольно-измерительной аппаратуры и предназначено для своевременно выявления деформации конструкций и предупреждения их полного разрушения.

Из уровня техники известен способ контроля состояния элементов строительных конструкций, основанный на периодически проводимых оператором замерах деформаций посредством тензометрических датчиков, устанавливаемых в местах опасных сечений (см. Ренский А.Б., Руководство по тензометрированию строительных конструкций и материалов. М., 1971 г., стр. 133). Недостатками способа являются субъективность снятия показаний с приборов-измерителей и ручная обработка информации.

Известен способ определения технического состояния гидротехнических сооружений ГОСТ №54523-2011 «Портовые гидротехнические сооружения правила обследования и мониторинга технического состояния», утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 ноября 2011 г. №600-ст. Сущность данного способа заключается в технических осмотрах и наблюдениях с установленной периодичностью, обеспечивающих выявление дефектов конструктивных элементов гидротехнических сооружений. При этом, осуществляется проведение визуального осмотра сооружения и в случае выявления деформационных процессов осуществляется его инструментальный осмотр. Очевидным недостатком указанного способа контроля является то, что при заданной периодичности - один раз в 5 лет, контроль состояния сооружения в межповерочный период не проводится. В результате, невозможно своевременно обнаружить развитие скрытых деструктивных процессов трещинообразования в критически важных конструктивных элементах, а также, определить реакцию на активные природно-техногенные воздействия, сопровождающиеся деформацией и разрушением сооружения. Последствия развития данной ситуации приводит к внезапным неконтролируемым разрушениям инженерных сооружений.

Известна измерительная тензометрическая система, предназначенная для проведения контроля состояния элементов строительных конструкций (Дайчик М.Л. Методы и средства натурной тензометрии. М.: Машиностроение, 1989 г., стр. 61), включающая набор тензодатчиков, коммутатор, измерительный блок, преобразующий выходной сигнал датчиков в цифровую форму, и печатающее устройство или же интерфейс для связи с ЭВМ для обработки данных. Однако система позволяет проводить только периодический контроль состояния конструкций.

В качестве ближайшего к заявляемому способу аналога принят способ дистанционного контроля и диагностики состояния конструкций и инженерных сооружений (см. патент на изобретение RU №2247958, МПК: G01M 5/00, опубл. 10.03.2005 г. ), содержащее измерительные преобразователи, в т.ч. тензометрические датчики, установленные в местах диагностирования конструкции, преобразователи сигналов с датчиков, несущих измерительную информацию, и контроллер, связанный через модем и линию связи с удаленным пунктом контроля, включающим ЭВМ. Устройство позволяет получать информацию в любой момент времени, т.е. осуществляет непрерывное отслеживание технического состояния конструкции в процессе ее эксплуатации. Однако способ реализации отличается относительно высокой сложностью, а устройство не обеспечивает наглядности представления информации, что снижает оперативность реагирования на аварийную ситуацию, и предназначено преимущественно для отслеживания состояния конструкций трубопроводов.

Задачей заявляемого изобретения является предотвращение нарушения целостности конструкции берегозащитных сооружений за счет распознавания угрозы на начальном этапе ее возникновения и обеспечение надежной защиты материально-технических ценностей и людей в случае возникновения аварийной ситуации и угрозе обрушения за счет оперативности реагирования.

Поставленная задача решена за счет того, что в способе контроля состояния берегозащитного сооружения или блочного инженерного сооружения, использована разработанная конструкция датчика, состоящего из двух одинаковых частей, которые устанавливают соосно, внутренними пластинами, вплотную одна часть к другой и крепят на расположенных рядом друг с другом элементов конструкций или блоков сооружения, одну из частей крепят с помощью крепежа к одному блоку, другую часть датчика крепят к другому блоку. Регистрирующая часть датчика содержит оптоволоконный кабель, принцип действия которого заключен в преобразовании деформации в коэффициент отражения света (Тер-Мартиросян З.Г. и др. Мониторинг напряженно-деформированного состояния многофункционального высотного комплекса волоконно-оптическим датчиками /Технологии строительства, 1(49), 2007 - с. 1-7.). Для определения критических перемещений отдельных блоков берегозащитного сооружения задается расчетное значение предельно допустимой степени натяжения оптоволоконного кабеля, определяющая их регистрацию. Конструкция датчика предполагает фиксацию оптоволоконного кабеля с требуемой степенью натяжения с его подключением непосредственно к блоку управления. При нарушении целостности берегозащитного сооружения со смещением блоков до заданных значения критических перемещений происходит регистрация факта смещения, блоком управления, обеспечивая тем самым недопущение разрушения берегозащитного сооружения. Факт регистрации достижения критического значения, заданного на датчике контроля состояния инженерного сооружения осуществляется на основе его регистрирующей части, выполненной как режущий инструмент, смещающийся вслед за возникающими деформациями, разрезая кабель и тем самым прекращают передачу сигнала от передатчика к приемнику, что сигнализирует достижение элементов сооружения заданного критического значения деформации ее целостности.

Предложенный способ контроля состояния берегозащитного сооружения с использованием данного датчика регистрации критической деформации за счет его упрощенной конструкции позволяет размещение нескольких датчиков на стыковочных блоках инженерного сооружения с различными заданными значения критического смещения, обеспечивая тем самым, возможность повышения детализации информации о приближении сооружения к предотказному состоянию. Однако заявляемое решение не ограничивает возможности использования других измерительных датчиков с целью контроля дополнительных параметров состояния берегозащитного сооружения.

Вышеприведенные совокупности существенных признаков, как способа, так и устройства позволяют получить новый положительный результат, а именно - наглядную и оперативную картину текущего состояния контролируемой конструкции, которая обеспечивает распознавание критической ситуации практически с момента ее возникновения и оперативность принятия своевременного и оптимально правильного решения по предотвращению развития деструктивных процессов.

Важным фактором, способствующим оперативности принятия решения о дальнейших действиях, является информационный сигнал о превышении предельно допустимой величины, указывающий на место локализации деструктивных процессов и вовлеченных в этот процесс конструкционных элементов сооружения. Это позволяет сократить временные затраты и повысить эффективность использования ресурсов при устранении выявленных нарушений.

В конкретном случае реализации устройства, блок управления, по каналам проводной связи сопряжен с центром обработки информации, обеспечивающего сбор и регистрацию всей информации об инженерном объекте, при наличии дополнительных датчиков контроля его состояния. Центр обработки информации связывается по каналам проводной или беспроводной связи, предполагающих соответствующее оборудование, со станционной частью устройства - компьютерным сервером, обеспечивающим предоставление информации подключенным к нему автоматизированным рабочим местам (АРМ) для дежурного персонала.

Устройство предназначено предпочтительно для контроля крупногабаритных и протяженных берегозащитных сооружений, занимающих большие площади. В этих случаях наиболее рациональным является размещение датчиков группами, каждая из которых связана со своим центром обработки информации (ЦОИ). Все ЦОИ независимо подключены каналами беспроводной связи со станционной частью устройства. Решение позволяет исключить необходимость прокладывания протяженных проводных линий.

Изобретение поясняется чертежами, где

на фиг. 1 представлена принципиальная схема установки датчиков регистрации критической деформации (ДРКД), реализующих способ на объекте контроля;

на фиг. 2 представлена принципиальная схема организации каналов связей устройства, реализующего способ на объекте контроля;

на фиг. 3 представлена принципиальная схема ДРКД;

на фиг. 4 представлена система крепления датчика регистрации критической деформации.

Изобретение осуществляется по средствам устройства контроля состояния конструкции берегозащитного сооружения, содержащего:

-набор датчиков регистрации критической деформации (ДРКД), включающих блоки управления оптоволоконными кабелями. ДРКД состоит из двух одинаковых частей. Каждая часть представляет из себя стальной уголок прямоугольной формы 2, во внутреннюю часть которого с обоих сторон приварены стальные внутренние пластины 3, имеющие в центре отверстие 1 достаточное для протягивание через него оптико-волоконного кабеля, подключенный к передатчику и приемнику, входящих в блок управления. На одной из сторон стального уголка устроены три отверстия 4 для крепления датчика к установочной площадке с помощью (шурупов или анкерного соединения), отверстия лежат на углах тупоугольного треугольника;

- центр обработки информации, включающей устройства для передачи информации по линиям проводной и беспроводной связи;

- стационарной части, включающей серверный компьютер, обеспечивающий возможность передачи информации на АРМ дежурного персонала и сам АРМ.

Все составляющие блоки устройства могут быть реализованы на базе известных выпускаемых элементов и микросхем, предназначенных для выполнения указанных функций.

Приведенный пример не исчерпывает возможные случаи реализации устройства и не ограничивает применение для контроля инженерного сооружения других видов измерительных датчиков, выдающих информацию в виде электрического аналогового сигнала.

Заявляемый способ контроля осуществляется посредством заявляемого устройства следующим образом. Осуществляется установка датчиков регистрации критической деформации в местах, подверженных наибольшим нагрузкам. Упомянутые места обычно определяет на основе конструкторской документации. В случае установки заявляемого устройства на существующий объект предварительно осуществляется комплексное обследования его физического состояния с последующим проведением имитационного моделирования критических режимов функционирования инженерного сооружения с выявлением мест установки. В память стационарной части устройства заносят расчетные величины предельно допустимой деформации для каждого контролируемого элемента конструкции, на который устанавливается датчик, а также сведения месте его расположения и другая необходимая при принятии решения информация.

За берегозащитным сооружением устанавливают постоянный надзор на протяжении всего периода эксплуатации. Система находится в постоянном режиме самодиагностики, обеспечивается проверка каналов связи и работоспособность элементов устройства. В случае, если целостность контролируемого объекта находится в допустимых пределах ДРКД находятся в состоянии ожидания. При превышении предельно допустимые значения осуществляется регистрация этого факта и блок управления передает сигнал о нарушении целостности контролируемого объекта по каналу проводной связи в центр обработки информации, который в свою очередь по выбранному каналу связи передает на стационарную часть устройства информацию о факте нарушения целостности и месте этого нарушения. Данные полученные стационарной частью устройства передается на АРМ дежурного персона с выдачей тревожного сигнала. Одновременно с этим производится обращение к компьютерному серверу и извлечение из него всей имеющейся информации о том элементе конструкции объекта наблюдения, на котором произошло регистрация факта нарушения целостности. Извлеченная информация выводится на экран дисплея.

Дежурный, в рабочей зоне которого расположен дисплей, фиксирует сигнал «тревоги». Эксплуатация инженерного сооружения приостанавливается и специалисты производят обследование конструкции, с которой поступил тревожный сигнал. После анализа принимается решение о дальнейшей эксплуатации берегозащитного сооружения.

Система позволяет предупредить возникновение опасных деформаций берегозащитных сооружений на ранних стадиях и тем самым предотвратить разрушение последних, осуществив своевременные мероприятия по предотвращению развития деструктивных процессов.

Постоянный контроль и надзор особенно важен при эксплуатации протяженных берегозащитных сооружений. Он позволяет обеспечить существенную экономию материально-технических ресурсов.

Заявляемое устройство контроля состояния берегозащитных сооружений позволяет круглосуточно автоматически отслеживать их состояние и выводить наглядную информацию на АРМ дежурного, который благодаря каналом беспроводной связи может быть расположен на требуемом удалении в составе существующих подразделения организации и не требует оборудования или строительства сооружений в близи расположения контролируемого объекта.

Похожие патенты RU2708340C2

название год авторы номер документа
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ КОНСТРУКЦИИ ЗДАНИЯ ИЛИ ИНЖЕНЕРНО-СТРОИТЕЛЬНОГО СООРУЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
RU2576548C2
СПОСОБ ИЗМЕРЕНИЙ И ДОЛГОВРЕМЕННОГО КОНТРОЛЯ КОНСТРУКЦИИ СТАРТОВОГО СООРУЖЕНИЯ РАКЕТ-НОСИТЕЛЕЙ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Прохорович Владимир Евгеньевич
  • Дикарев Виктор Иванович
  • Офтин Александр Васильевич
  • Криков Валерий Алексеевич
  • Федоров Алексей Владимирович
  • Кинжагулов Игорь Юрьевич
  • Вдовенко Сергей Владимирович
  • Меньшиков Сергей Станиславович
RU2591734C1
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ КОНСТРУКЦИИ ЗДАНИЯ ИЛИ ИНЖЕНЕРНО-СТРОИТЕЛЬНОГО СООРУЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Золотов Николай Сергеевич
  • Золотов Александр Николаевич
RU2327105C2
АВТОМАТИЗИРОВАННАЯ КОМПЛЕКСНАЯ СИСТЕМА МОНИТОРИНГА УДАЛЕННЫХ ОБЪЕКТОВ И СПОСОБ МОНИТОРИНГА УДАЛЕННЫХ ОБЪЕКТОВ 2023
  • Шеховцов Александр Александрович
  • Берлизов Игорь Анатольевич
RU2820412C1
СИСТЕМА СПУТНИКОВОГО МОНИТОРИНГА СМЕЩЕНИЙ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ СПУТНИКОВЫХ НАВИГАЦИОННЫХ СИСТЕМ ГЛОНАСС/GPS 2011
  • Багаутдинова Елена Рашитовна
  • Еникеев Эрнст Камильевич
  • Кошманов Владимир Федорович
  • Ревяков Геннадий Алексеевич
  • Чистяков Вячеслав Юрьевич
RU2467298C1
ОПТОВОЛОКОННЫЙ АКУСТИКО-ЭМИССИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ БОЛЬШИХ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ 2016
  • Горбачев Олег Викторович
  • Самохвалов Сергей Яковлевич
  • Артюхов Денис Иванович
RU2650799C2
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ КОНСТРУКЦИИ ЗДАНИЯ ИЛИ ИНЖЕНЕРНО-СТРОИТЕЛЬНОГО СООРУЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Звонков Александр Вячеславович
  • Краснов Михаил Олегович
  • Дикарев Виктор Иванович
RU2678109C2
КОМПЛЕКСНАЯ СИСТЕМА ИНЖЕНЕРНОГО ОБЕСПЕЧЕНИЯ, АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ, СВЯЗИ И ЭЛЕКТРОПИТАНИЯ (КСИАС) 2010
  • Куперман Марк Борисович
RU2445693C1
СПОСОБ ОРГАНИЗАЦИИ СИСТЕМЫ МОНИТОРИНГА БЕЗОПАСНОСТИ И ЭКСПЛУАТАЦИИ ЗДАНИЙ И ИНЖЕНЕРНО-СТРОИТЕЛЬНЫХ СООРУЖЕНИЙ 2020
  • Удалов Дмитрий Александрович
RU2724355C1
Информационно-аналитическая система мониторинга механической безопасности конструкций сложного инженерного сооружения 2020
  • Березенцев Михаил Михайлович
  • Васильев Алексей Ильич
  • Калинин Сергей Юрьевич
RU2751053C1

Иллюстрации к изобретению RU 2 708 340 C2

Реферат патента 2019 года СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ БЕРЕГОЗАЩИТНОГО СООРУЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к способам контроля нарушения целостности берегозащитных сооружений, в частности волноотбойных стен, состоящих по меньшей мере из одного или нескольких массивных блоков, в частности железобетонных, а также блочных фундаментов инженерных сооружений с помощью волоконно-оптической контрольно-измерительной аппаратуры и предназначено для своевременного выявления деформации конструкций и предупреждения их полного разрушения. Способ заключается в контроле состояния берегозащитного сооружения с использованием датчика регистрации критической деформации за счет его упрощенной конструкции, позволяющей размещать несколько датчиков на стыковочных блоках инженерного сооружения с различными заданными значениями критического смещения, обеспечивая тем самым возможность повышения детализации информации о приближении сооружения к предотказному состоянию. Устройство содержит серверный компьютер с подключенными к нему автоматизированными рабочими местами, датчиками регистрации критической деформации, размещенными в местах диагностирования конструкции, блок управления, связанный с ними центрами обработки информации, и средства связи с упомянутым компьютером. Технический результат заключается в предотвращении разрушения конструкции берегозащитных сооружений за счет оперативности реагирования благодаря визуализации полученной информации в более наглядной и доступной для восприятия оператора форме. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 708 340 C2

1. Способ контроля состояния берегозащитного сооружения, включающий получение данных от датчиков, установленных в местах диагностирования конструкции, преобразование полученной с датчиков информации и ее передачу, отличающийся тем, что датчики регистрации критической деформации, состоящие из двух одинаковых частей, устанавливают соосно внутренним пластинам, вплотную одна часть к другой и закрепляют с помощью крепежа на расположенных рядом друг с другом блоках берегозащитного сооружения, с пропущенным через отверстия во внутренних и внешних пластинах обеих частей датчика оптоволоконным кабелем, который фиксируют с требуемой степенью натяжения, соответствующего предельному критическому перемещению отдельных блоков берегозащитного сооружения, с подключением кабеля к блоку управления, при этом датчики настроены на выбранное фиксированное значение деформации и находятся в режиме ожидания, срабатывая только в случае достижения деформации критического значения с передачей блоком управления этой информации в центр обработки информации, который дополнительно к данной информации передает и данные о расположении на инженерном объекте места деформации на стационарную часть устройства - серверный компьютер, обеспечивающий передачу информации на автоматизированное рабочее место дежурного персонала, который формирует условное изображение контролируемого объекта, повторяющее его конструкцию, размещает на нем в местах, соответствующих реальному расположению датчиков, место регистрации деформации в виде сигнального маяка с выводом упомянутого изображения на экран компьютера, а также обеспечивает самодиагностику каналов связи и датчиков, выводя информацию о контроле их состояния на экран монитора.

2. Устройство контроля состояния конструкции берегозащитного сооружения, содержащее стационарную часть, характеризующееся использованием компьютера-сервера и автоматизированных рабочих мест, отличающееся тем, что оно снабжено датчиками регистрации критической деформации, состоящими из двух одинаковых частей, установленных соосно внутренним пластинам, вплотную одной части к другой, закрепленных на расположенных рядом друг к другу блоках берегозащитного сооружения, с пропущенным через отверстия во внутренних и внешних пластинах обеих частей датчика оптоволоконным кабелем, зафиксированным с требуемой степенью натяжения, соответствующего предельному критическому перемещению отдельных блоков берегозащитного сооружения, с подключенным оптическим кабелем одним концом к оптическому передатчику, другим - к оптическому приемнику блока управления, размещенных в местах диагностирования конструкции, связанного с ними центрами обработки информации, включающего плату аналого-цифрового преобразователя, и средства связи центра обработки информации с упомянутым компьютером, выполненным с возможностью самодиагностики каналов связи и проверки работоспособности элементов устройства, приема и регистрации сигналов, содержащих измерительную информацию.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708340C2

СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ И ДИАГНОСТИКИ СОСТОЯНИЯ КОНСТРУКЦИИ И ИНЖЕНЕРНЫХ СООРУЖЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Прохожаев О.Т.
  • Петров Н.Г.
  • Егоров И.Ф.
  • Усошин В.А.
  • Семенюга В.В.
  • Попенко А.Н.
  • Михайлюк С.В.
RU2247958C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ И СПОСОБ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ 2012
  • Дьютойт Дана
RU2540258C1
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ЛИНЕЙНЫХ ДЕФОРМАЦИЙ 1997
  • Захаров В.В.
  • Селюков Е.И.
  • Павлов В.А.
RU2120517C1
CN 204854648 U, 09.12.2015.

RU 2 708 340 C2

Авторы

Прокопенко Анатолий Васильевич

Явна Виктор Анатольевич

Федорчук Андрей Евгеньевич

Пономарев Александр Иванович

Каспржицкий Антон Сергеевич

Лазоренко Георгий Иванович

Даты

2019-12-05Публикация

2018-03-21Подача