Устройство определения задымления в лабораторной электропечи Российский патент 2019 года по МПК G01N21/53 G08B17/00 

Описание патента на изобретение RU2709436C1

Предлагаемое изобретение относится к технической физике, а именно, к устройствам для фотометрических измерений физических параметров образцов металлических высокотемпературных, до tпл = 2000°С, расплавов, основанных на изучении упругих крутильных колебаний цилиндрического тигля с расплавом, размещенных в подвешенном на упругой закручиваемой нити тигле объемом в единицы см3, и предназначено для бесконтактного определения термозависимостей преимущественно кинематической вязкости ν(t) и удельного электросопротивления ρ(t) образцов этих расплавов в водоохлаждаемой вакуумной электропечи, заполненной инертным газом. Изобретение может быть использовано в лабораторных исследованиях на металлургических предприятиях и/или в вузах.

Измерение физических параметров металлических расплавов и шлаков, преимущественно высокотемпературных, до tпл = 2000°С, например на основе Fe, Co, Ni, позволяет проводить прогностический анализ материалов и давать рекомендации для получения сплавов с заданными характеристиками. При этом используют способы и устройства определения температурных зависимостей преимущественно кинематической вязкости ν(t) и/или удельного электросопротивления ρ(t) образцов расплавов в водоохлаждаемой электропечи вертикального типа, заполненной после ее вакуумирования инертным газом, с использованием нагреваемого образца известной массы m, помещенного в тигле в зоне нагрева этой электропечи. Значения параметров ν(t), ρ(t) в большинстве случаев взаимосвязаны, необходимы и достаточны для характеристики исследуемого металлического сплава. В основном используют бесконтактный фотометрический способ определения этих параметров на основе изучения траектории отраженного от зафиксированного на упругой нити зеркала светового луча - «зайчика», посредством определения затухания крутильных колебаний упругой нити с подвешенным на ней в электропечи тиглем с этим образцом – см. пат. РФ № 2457473 – аналог. Измерение параметров ν(t), ρ(t) проводят для каждой температурной точки tj. с получением значений в виде электрических сигналов, после чего производят аналогичное измерение этих же параметров в следующей температурной точке tj+1 и т. д., после чего полученные термозависимости анализируют.

Известно устройство для определения свободной поверхностной энергии, плотности и вязкости жидких металлов, которое использует электромагнитное устройство со шторками для предохранения смотровых окон от запыления и нагрева – см. В.И. Ниженко, Н.Ф. Данько «Установка для определения свободной поверхностной энергии, плотности и вязкости жидких металлов». В кн. «Методы исследования и свойства границ раздела контактирующих фаз». Киев, Наукова думка, 1977, с. 46, 47 – аналог.

Прототипом предлагаемого устройства является устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержащее патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит по меньшей мере один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером – см. пат. РФ № 2663321.

Недостатками вышеуказанных устройств являются уменьшение достоверности и помехозащищенности измерений из-за возможного задымления внутри сначала вакуумированной, а затем заполненной инертным газом электропечи. Такое задымление возникает в ряде экспериментов, особенно в области высоких температур. Задымление различной интенсивности всегда заполняет всю электропечь, в том числе область смотрового окна, и влияет на динамику эксперимента. Оно непредсказуемо и практически неизбежно для ряда сплавов. При этом в электропечи образуются непрозрачные взвеси, аэрозоли, пары внутри нее, вследствие испарения абсорбированных газов, термоугара компонентов расплава и их испарения. Кроме того, молибденовый нагреватель электропечи и защитные экраны также окисляются с образованием окисла МоО, который интенсивно испаряется при температурах выше 900°С. Они не только частично оседают на смотровом стекле – см. вышеуказанный аналог В.И. Ниженко, Н.Ф. Данько, но и обусловливают ухудшение определения параметров образца за счет распространения по всему внутреннему объему электропечи и затенения отраженного от зеркала светового «зайчика». Использование датчика задымления при его размещении внутри электропечи, в области высоких и максимальных температур tj, неизбежных в процессе исследования вышеуказанных высокотемпературных сплавов, может приводить к потере данных, уменьшению достоверности получаемых от датчика задымления результатов и возрастанию вероятности срыва эксперимента. Уменьшается точность управления моментом включения/выключения вакуумного насоса и/или подачей инертного газа в электропечь, которая может длиться всего 1-2 минуты, а в конечном итоге, возможность осуществления штатной процедуры эксперимента. В этом случае объем полезной информации о параметрах ν(t) и/или ρ(t) уменьшается, но появляются недостоверные и необъективные результаты Кроме того, вследствие отсутствия прямого доступа к датчику задымления из-за его размещения внутри электропечи, становится невозможным его повторное тестирование и тем более его замена, которые не могут быть реализованы в возможно возникший непредсказуемый момент эксперимента. Такие действия могут быть осуществлены только после вынужденного завершения эксперимента. Это повлечет за собой приведение изучаемого образца в негодность и осуществление экспериментов заново, с новой калибровкой и многочасовыми подготовительными работами.

Изобретение направлено на решение технической проблемы, а именно, обеспечение и сохранение возможности оценки влияния характеристик задымления при высокой температуре в электропечи, заполненной инертным газом, на процесс управления работой вакуумного насоса и поступления инертного газа в электропечь при изучении расплава, и таким образом, устранение повреждающего влияния высокой температуры в электропечи на датчик задымления, а в конечном итоге, обеспечение осуществления штатной процедуры эксперимента.

Технический результат, достигаемый при реализации заявляемого устройства, заключается в устранении влияния температуры в электропечи на функционирование датчика задымления при оценке оптических и физических характеристик задымления, обеспечении увеличения надежности и достоверности управления работой вакуумного насоса и подачей инертного газа в электропечь, а в конечном итоге, объективизации оценки характеристик задымления, обеспечении осуществления штатной процедуры эксперимента.

При осуществлении заявляемого устройства решается проблема отсутствия устройств данного назначения и, соответственно, достигается технический результат, который заключается в реализации назначения устройства.

Указанная проблема решается с помощью предлагаемого изобретения – устройства определения задымления в лабораторной электропечи.

Заявляется устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержащее патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит по меньшей мере один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером.

От прототипа устройство отличается тем, что в него введен прозрачный трубчатый элемент, на котором размещен датчик задымления, а этот элемент расположен между вакуумным шлангом и патрубком электропечи.

Кроме того, прозрачный трубчатый элемент выполнен в виде прозрачного вакуумного шланга, преимущественно поливинилхлоридного.

Кроме того, датчик задымления выполнен в виде тепловизора.

Кроме того, датчик задымления выполнен в виде фотовидеокамеры.

Кроме того, датчик задымления выполнен в виде гаджета, преимущественно смартфона.

Таким образом, при реализации изобретения достигается уменьшение влияния температуры в электропечи на функционирование датчика задымления, при оценке оптических и физических характеристик задымления в процессе изучения образца расплава, обеспечивается объективизация характеристик задымления и степени его влияния на эксперимент, оптимизация процедур устранения задымления и осуществления продолжения эксперимента, уменьшение количества непредсказуемых срывов эксперимента, а в конечном итоге, при появлении задымления достигается обеспечение возможности продолжения фотометрии характеристик ν(t), ρ(t) образца расплава.

Предлагаемое изобретение поясняется фигурой - Фиг. 1, на которой изображена блок-схема устройства определения задымления. Оно содержит электропечь 1, цилиндрический электронагреватель 2, патрубок 3 электропечи 1, вакуумный шланг 4, водяной шланг 5, прозрачный трубчатый элемент 6, датчик задымления 7, канал связи 8, тепловой защитный экран 9, водяное охлаждение электропечи 10.

Электропечь 1 мощностью 20 кВА выполнена в виде цилиндрической, преимущественно вертикальной, конструкции с водяным охлаждением 10. Цилиндрический электронагреватель 2 обеспечивает изотермическую зону нагрева. Внутри него коаксиально размещен подвешенный на упругой проволоке тигель с образцом расплава (на схеме не показаны). Этот электронагреватель 2 выполнен из тугоплавкого немагнитного материала, преимущественно из двух полуколец листового молибдена. Патрубок 3 электропечи 1 стальной. Вакуумный шланг 4 выполнен из толстостенной вакуумной резины или, предпочтительно, прозрачного вакуумного ПВХ- шланга. Водяной шланг 5 выполнен дюритовым или из армированной резины. Прозрачный полый элемент 6 выполнен преимущественно в виде трубки из стекла или оргстекла. Датчик задымления 7 закреплен вблизи прозрачного трубчатого элемента 6, например, зафиксирован на этом элементе 6 и представляет собой фотосенсор, например оптрон на основе светодиода и фототранзистор. Он реагирует на изменение прохождения или отражения светового излучения светодиода сквозь прозрачный трубчатый элемент 6 – см. «Википедия», статья «Пожарный извещатель». Датчик задымления 7 производит сигнал и в то же время реагирует на изменение задымлённости. При уменьшении задымленности он отключает выходной сигнал, при увеличении задымленности вырабатывает выходной сигнал. Кроме того, фотосенсор может быть выполнен как датчик дыма, например серого или черного. Датчик задымления 7 может быть также выполнен в виде портативного тепловизора, например HT826 производства КНР, в виде гаджета, например смартфона, либо цифрового фотоаппарата с видеорежимом, например фирмы Panasonic. Канал связи 8 соединяет датчик задымления 7 с управляющим компьютером (на схеме не показано) и может быть выполнен проводным, например usb, или беспроводным на основе wi-fi канала. Тепловой цилиндрический защитный экран 9 содержит несколько слоев молибдена и высокотемпературной керамики. Водяное охлаждение различных узлов электропечи 10 производят посредством парных подводящих и отводящих водяных шлангов 5 от водной магистрали проточной водой или посредством циркуляционной замкнутой системы охлаждения. Вакуумный насос, совместно с системой контроля «Мерадат» (на схеме не показаны), обеспечивает откачивание газов из электропечи 1 до уровня 10-2 мм Hg посредством коммутируемого вакуумного шланга 4, через который после перекоммутации инертный газ, преимущественно гелий, подают из баллона при манометрическом контроле (на схеме не показано).

Определение задымления в лабораторной электропечи осуществляют посредством вышеописанного устройства следующим образом. Подготавливают изучаемый образец, определяют его массу, после чего помещают его в тигель, который подвешивают коаксиально в электронагревателе 2 в центре зоны нагрева. Прозрачный трубчатый элемент 6 и датчик задымления 7 пристыковывают к патрубку 3 электропечи 1 с одной стороны и вакуумному шлангу 4 с другой. Электропечь 1 вакуумируют, для чего используют вакуумный насос и коммутируемый вакуумный шланг 4, подключая этот шланг 4 к насосу. Потом электропечь 1 заполняют гелием посредством этого же шланга 4, перекоммутированного к баллону с гелием (на схеме не показан). Затем начинают эксперимент, в ходе которого изучают фотометрическим методом ν(t), ρ(t) образца, при этом в ходе эксперимента непрерывно осуществляют пороговое контролирование задымления в электропечи 1.

Задымление происходит менее чем за одну минуту внутри всего объема электропечи 1 и имеет практически аналогичные характеристики в различных местах внутри этого объема, в том числе у смотрового окна (на схеме не показано), в патрубке 3 электропечи 1, прозрачном трубчатом элементе 6, стыке этого элемента и вакуумного шланга 4. Поскольку датчик задымления 7 закреплен, например зафиксирован, на прозрачном трубчатом элементе 6, он вырабатывает сигналы, зависящие от задымления, эквивалентные тому, как если бы он находился внутри электропечи 1, например, непосредственно в зоне нагрева тигля с расплавом или около смотрового окна. Эти сигналы через канал связи 8 и компьютер (на схеме не показан) управляют работой вакуумного насоса. Работоспособность датчика задымления 7 в данном случае не зависит от высокой температуры внутри электропечи, что обеспечивает надежность и стабильность его параметров. После появления задымления в данной температурной точке tj останавливают эксперимент, в течение нескольких минут, преимущественно 1 - 2 минуты, вакуумируют электропечь 1, уменьшают задымление и количество инертного газа в электропечи. Затем компенсируют уменьшение количества этого газа его докачиванием из баллона до величины давления газа в начале эксперимента, после чего прекращают докачивание газа, отключают этот баллон и продолжают эксперимент, при этом осуществляют последующие операции способа.

Предложенное техническое решение, независимо от высоких температур в электропечи, обеспечивает возможность функционирования и отсутствия повреждения датчика задымления, и сохранения объективности оценки оптических характеристик задымления при изучении образца. Это расширяет функциональные возможности устройства, обеспечивает возможность получения данных о начале задымления, динамике его устранения и продления исследования. Таким образом, возрастает помехозащищенность фотометрии при изучении образцов, а в конечном итоге, сохраняется достоверность и точность определения физических параметров исследуемого образца высокотемпературного металлического расплава.

Похожие патенты RU2709436C1

название год авторы номер документа
Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов 2017
  • Поводатор Аркадий Моисеевич
  • Вьюхин Владимир Викторович
  • Цепелев Владимир Степанович
  • Конашков Виктор Васильевич
RU2663321C1
Устройство бесконтактного определения вязкости образцов металлических расплавов 2017
  • Поводатор Аркадий Моисеевич
  • Вьюхин Владимир Викторович
  • Цепелев Владимир Степанович
  • Конашков Виктор Васильевич
RU2668958C1
Тигельное устройство 2020
  • Вьюхин Владимир Викторович
  • Поводатор Аркадий Моисеевич
  • Цепелев Владимир Степанович
  • Кочеткова Екатерина Александровна
RU2763925C1
СПОСОБ ИЗМЕРЕНИЯ КИНЕМАТИЧЕСКОЙ ВЯЗКОСТИ И ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ (ВАРИАНТЫ) 2010
  • Конашков Виктор Васильевич
  • Поводатор Аркадий Моисеевич
  • Вьюхин Владимир Викторович
  • Цепелев Владимир Степанович
RU2454656C1
Устройство для индикации фазового перехода 2021
  • Вьюхин Владимир Викторович
  • Поводатор Аркадий Моисеевич
  • Цепелев Владимир Степанович
RU2780762C1
Устройство для фотометрического определения удельного электросопротивления металлических расплавов 2016
  • Поводатор Аркадий Моисеевич
  • Цепелев Владимир Степанович
  • Вьюхин Владимир Викторович
  • Конашков Виктор Васильевич
RU2629699C1
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАБОТЫ НАГРЕВАТЕЛЯ ЭЛЕКТРОПЕЧИ 2013
  • Ладьянов Владимир Иванович
  • Цепелев Владимир Степанович
  • Поводатор Аркадий Моисеевич
  • Конашков Виктор Васильевич
  • Вьюхин Владимир Викторович
  • Бельтюков Анатолий Леонидович
RU2563337C2
СПОСОБ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛИЧЕСКОГО РАСПЛАВА МЕТОДОМ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ 2010
  • Конашков Виктор Васильевич
  • Поводатор Аркадий Моисеевич
  • Вьюхин Владимир Викторович
  • Цепелев Владимир Степанович
RU2457473C2
Устройство для определения плотности и поверхностного натяжения металлических расплавов 2022
  • Вьюхин Владимир Викторович
  • Поводатор Аркадий Моисеевич
  • Цепелев Владимир Степанович
RU2806360C1
Способ оценки равновесности металлических расплавов 2017
  • Тягунов Геннадий Васильевич
  • Цепелев Владимир Степанович
  • Поводатор Аркадий Моисеевич
  • Барышев Евгений Евгеньевич
  • Вьюхин Владимир Викторович
  • Тягунов Андрей Геннадьевич
  • Мушников Валерий Сергеевич
RU2680984C1

Иллюстрации к изобретению RU 2 709 436 C1

Реферат патента 2019 года Устройство определения задымления в лабораторной электропечи

Изобретение относится к технической физике, в частности к определению параметров металлических расплавов. Устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержит патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит, по меньшей мере, один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером, прозрачный трубчатый элемент, на котором размещен датчик задымления, расположен между вакуумным шлангом и патрубком электропечи. Техническим результатом является возможность функционирования и сохранения объективности оценки оптических характеристик задымления при изучении образца без повреждения датчика задымления. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 709 436 C1

1. Устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержащее патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит, по меньшей мере, один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером, отличающееся тем, что в него введен прозрачный трубчатый элемент, на котором размещен датчик задымления, а этот элемент расположен между вакуумным шлангом и патрубком электропечи.

2. Устройство по п. 1, отличающееся тем, что прозрачный трубчатый элемент выполнен в виде прозрачного вакуумного шланга, преимущественно поливинилхлоридного.

3. Устройство по п. 1, отличающееся тем, что датчик задымления выполнен в виде тепловизора.

4. Устройство по п. 1, отличающееся тем, что датчик задымления выполнен в виде фотовидеокамеры.

5. Устройство по п. 1, отличающееся тем, что датчик задымления выполнен в виде гаджета, преимущественно смартфона.

Документы, цитированные в отчете о поиске Патент 2019 года RU2709436C1

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов 2017
  • Поводатор Аркадий Моисеевич
  • Вьюхин Владимир Викторович
  • Цепелев Владимир Степанович
  • Конашков Виктор Васильевич
RU2663321C1
СИСТЕМА УПРАВЛЕНИЯ ДЛЯ УПРАВЛЕНИЯ ПОДАЧЕЙ С СЖИГАНИЕМ ПЫЛЕВИДНОГО ТОПЛИВА В СТЕКЛОВАРЕННОЙ ПЕЧИ 2003
  • Солис Мартинес Иван Хорхе
RU2355650C2
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ВЯЗКОСТИ ВЫСОКОТЕМПЕРАТУРНЫХ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2007
  • Цепелев Владимир Степанович
  • Конашков Виктор Васильевич
  • Вьюхин Владимир Викторович
  • Поводатор Аркадий Моисеевич
RU2349898C1
US 5841534 A1, 24.11.1998.

RU 2 709 436 C1

Авторы

Цепелев Владимир Степанович

Поводатор Аркадий Моисеевич

Вьюхин Владимир Викторович

Конашков Виктор Васильевич

Даты

2019-12-17Публикация

2019-02-27Подача