Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и в частности в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов.
Известно устройство источника плазмы [С.А. Линник, А.В. Гайдайчук, И.В.Шаманин. Источник плазмы тлеющего разряда с эффектом полого катода для модификации свойств поверхности и нанесения покрытий. - Известия Томского политехнического университета. 20П. Т.318. №2. с. 86], включающее вакуумную камеру, полый катод, анод, крышку с отверстием для подачи газа, разделительную переборку с отверстием, источник напряжения.
Недостатком прототипа является малая апертура (действующее отверстие) источника плазмы.
Наиболее близким аналогом заявленного изобретения является устройство источника плазмы [А.В. Визирь, Е.М. Окс, П.М. Щанин, Г.Ю. Юшков. Несамостоятельный тлеющий разряд с полым катодом для широкоапертурных источников. - Журнал технической физики, 1997, том 67, №6. с. 27] несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки.
Недостатком аналога является малая апертура источника плазмы.
Задачей настоящего изобретения является увеличение апертуры источника плазмы.
Техническим результатом является повышение равномерности обработки крупногабаритных изделий и скорости процесса.
Технический результат достигается тем, что в устройстве источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащем полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно выполнено в виде коаксиальных полых цилиндров радиусы которых связаны соотношением
Rn=n⋅R1,
где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношением
В последнее время в связи с постепенным внедрением ионных и электронных технологий в производство возрастает интерес к получению пучков с большим поперечным сечением [Бугаев С.П. Электронные пучки большого сечения / С.П. Бугаев, Ю.Е. Крейедель, П.М. Щанин. М.:Энергоатомиздат, 1984. 112 с.], которые дают возможность быстрой обработки крупных деталей без сканирования по поверхности образца или без его перемещения, а также одновременной обработки большой партии мелких деталей. Эффектом полого катода является большая величина тока, протекающего через разряд, по сравнению с системой с плоскими электродами, имеющей геометрические размеры того же порядка. Такой тип разряда реализуется в полости, когда ее диаметр (2R1 примерно соответствует длине отрицательного свечения. Электроны производят эффективную ионизацию за счет осцилляции между катодным падением потенциала противоположных стенок полости при этом характерный размер катодной полости (2R1) должен быть меньше длины свободного пробега электронов. В разряде с полым катодам происходит резкое падение напряжения горения разряда и увеличение его тока. Экспериментально установлено, что минимум напряжения или максимум разрядного тока (при поддержании заданного напряжения) наблюдается при отношении длины L цилиндрического полого катода к его диаметру (2R1) примерно равным 10 (Крейндель Ю.Е. Плазменные источники электронов / Ю.Е. Крендель. М.: Атомиздат, 1977. 145 с.). Для функционирования разряда в сильноточном низковольтном режиме горения необходимо обеспечить давление в разрядном промежутке порядка 1 Па. Для сохранения же электрической прочности ускоряющего промежутка и транспортировки ускоренного пучка на значительные расстояния давление в этих областях должно быть ниже 10-2 Па. Снижение давления в разрядном промежутке приводит к быстрому росту напряжения разряда, и он переходит в высоковольтную слаботочную форму либо обрывается при недостаточном напряжении источника питания. Инжекция электронов позволяет понизить минимальное давление, при котором существует разряд в полом катоде до значения <10-2 Па [А.В. Визирь, Е.М. Окс, П.М. Щанин, Г.Ю. Юшков. Несамостоятельный тлеющий разряд с полым катодом для широкоапертурных источников. - Журнал технической физики, 1997, том 67, №6. с. 27]. Для стабилизации эмиссионной поверхности плазмы эмиссионное окно перекрывают мелкоструктурной сеткой. Замена мелкоструктурной сетки на совокупность коаксиальных полых цилиндров позволяет, при одинаковом характеристическом размере(одинаковом размере ячеек сетки и диаметре цилиндров (2R1)) примерно в 5 раз увеличить выходную аппретуру(при одинаковом геометрическом размере эмиссионного окна) эмиссионного окна. Увеличение ионного потока с единицы площади свидетельствует об повышении плотности плазмы, что интенсифицирует (ускоряет) процессы обработки деталей. Поскольку зазоры между коаксиальными цилиндрами являются кольцевыми полыми катодами, то это позволяет создавать источники плазмы с любыми требуемыми поперечными сечениями пучков, а также дополнительно повысить плотность плазменного потока. Увеличение поперечного сечения пучка ионов, а также повышение плотности потока ионов, позволяют повысить равномерность обработки крупногабаритных изделий и скорость процесса.
На фиг. 1 изображена схема устройства источника плазмы несамостоятельного газового разряда с эффектом полого катода. Схема содержит полый катод основного разряда 1, анод основного разряда 2, полый катод вспомогательного разряда 5, отверстие для подачи газа 7, эмиссионное окно выполненное в виде коаксиальных полых цилиндров 4, керамические кольца 3, 6, сетка для ослабления провисания потенциала 8, ускоряющий электрод 9, коллектор 10.
На фиг. 2 изображено эмиссионное окно выполненное в виде коаксиальных полых цилиндров радиусы которых связаны соотношением
Rn⋅R1,
где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношением
Пример конкретной реализации устройства.
Источник плазмы несамостоятельного газового разряда с эффектом полого катода помещаем в вакуумную камеру, где создается давление 5⋅10-3 Па. В отверстие 7 подаем рабочий газ понижающий давление во вспомогательном полом катоде 5(длиной и диаметром 12,5 см) до 2 Па. На торце полого катода 5 имеется центральное отверстие диаметром 5 мм, которое расположено соосно с отверстием 7 мм в полом катоде 1. Из-за перепада давления при протекании газа через отверстия в электродах 1 и 5 давление газа в полом катоде основного разряда 1 (длиной, шириной и высотой 40 см.) составит примерно 10-2 Па. Вспомогательный разряд инициируется разрядом на поверхности керамического кольца 6 и возникает в начальный момент приложения напряжения от регулируемого выпрямителем с напряжением до 3 кВ и током до 0,3 А между полым катодом 5 и электродом 1, являющегося анодом вспомогательного разряда. Для ослабления провисания потенциала в катодную полость вспомогательного разряда отверстие в торцевом электроде закрывается вольфрамовой сеткой с размером ячейки 0,2 мм 8. Дополнительная инжекция электронов в катодную полость основного разряда осуществляется при их отборе из плазмы вспомогательного разряда, зажигаемого между полым катодом 5 и электродом 1. Основной разряд зажигаем между полым катодом основного разряда 1 и размещенным внутри анодом 2, представляющим стержень диаметром 8 мм, включив регулируемый выпрямитель с напряжением до 2 кВ и током до 1 А. При токе электронов в вспомогательном разряде 50 мА основной разряд стабильно зажигается при давлении вплоть до 5×10-3 Па. Включаем ускоряющее ионы напряжение величиной до 5 кВ, приложенное между катодом 1 и ускоряющим электродом 9, находящимся при отрицательном относительно коллектора 10 потенциалом.
Отбор ионов из плазмы основного разряда осуществляем через круглое эмиссионное окно 4 представляющее собой коаксиальные цилиндры круглого сечения, радиусы которых связаны соотношением
Rn=nR1,
где n - порядковый номер цилиндра, начиная с первого, R1=4 мм, расположенное на боковой поверхности полого катода основного разряда 1. Длина L цилиндров, определенная из выражения L/2R1=10, равна 80 мм. При данных размерах число полых катодов в эмиссионном окне равно 24(n=24).
Предлагаемое устройство позволяет:
1. получать пучки ионов с требуемым поперечным сечением,
2. повысить равномерность ионной обработки за счет применения пучков ионов с большим поперечным сечением,
3. сократить время технологического процесса за счет увеличения плотности ионного пучка и применения пучков с большим поперечным сечением.
название | год | авторы | номер документа |
---|---|---|---|
Плазменный источник электронов с системой автоматического поджига тлеющего разряда в полом катоде, функционирующий в среднем вакууме | 2023 |
|
RU2816693C1 |
ГЕНЕРАТОР ОБЪЕМНОЙ ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2000 |
|
RU2175469C1 |
СПОСОБ ПОВЫШЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ИСТОЧНИКОВ ЭЛЕКТРОНОВ НА ОСНОВЕ ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ | 2021 |
|
RU2772817C1 |
Способ ионно-плазменного азотирования изделий из титана или титанового сплава | 2018 |
|
RU2686975C1 |
МНОГОЛУЧЕВОЙ ГЕНЕРАТОР ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2006 |
|
RU2333619C2 |
УСТРОЙСТВО ДЛЯ ПОВЕРХНОСТНОЙ ОБРАБОТКИ МЕТАЛЛИЧЕСКИХ И МЕТАЛЛОКЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 2019 |
|
RU2725788C1 |
ГЕНЕРАТОР ШИРОКОАППЕРТУРНОГО ПОТОКА ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2012 |
|
RU2496283C1 |
ВТОРИЧНО-ЭМИССИОННЫЙ УСКОРИТЕЛЬ ЭЛЕКТРОНОВ | 1993 |
|
RU2091991C1 |
Устройство для азотирования в разряде | 2021 |
|
RU2777796C1 |
ФОКУСАТОР ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2006 |
|
RU2339191C2 |
Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и, в частности, в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов. Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки отличается тем, что эмиссионное окно выполнено в виде коаксиальных полых цилиндров, радиусы которых связаны соотношением Rn=nR, где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношениемТехнический результат - повышение равномерности обработки крупногабаритных изделий и скорости процесса. 2 ил.
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки, отличающееся тем, что эмиссионное окно выполнено в виде коаксиальных полых цилиндров, радиусы которых связаны соотношением
Rn=n⋅R,
где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношением
ЖТФ, 1997, т.67, N6, с.27 | |||
ГЕНЕРАТОР ШИРОКОАППЕРТУРНОГО ПОТОКА ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2012 |
|
RU2496283C1 |
МНОГОЛУЧЕВОЙ ГЕНЕРАТОР ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2006 |
|
RU2333619C2 |
US 2001020582 A1, 13.09.2001 | |||
Компенсатор переменного тока | 1959 |
|
SU125621A1 |
Авторы
Даты
2020-01-16—Публикация
2019-06-10—Подача