Изобретение относится к области полупроводниковой микроэлектроники и может быть использовано в производстве полупроводниковых приборов, интегральных и гибридных микросхем.
Существуют различные способы монтажа полупроводниковых кристаллов к основанию корпуса или кристаллодержателя.
Известен способ пайки полупроводникового кристалла к корпусу, по патенту РФ №2167469, включающий покрытие слоя никеля на коллекторной стороне кристалла сплавом никель-олово, содержащим 30-50% Ni, и пайку на фольгу припоя ПСр 2,5, в среде водорода или в вакууме.
Также известен способ посадки кремниевого кристалла на основание корпуса, включающий последовательное напыление в едином технологическом цикле на посадочную поверхность кристалла слоев металлов хром-никель-серебро и пайку кристалла к основанию корпуса с помощью оловянно-свинцовой прокладки, по патенту РФ №2359360.
Недостатками указанных способов являются низкая однородность соединения кристалла с основанием корпуса, высокая трудоемкость технологических операций, связанных с изготовлением и использованием припойной прокладки.
Наиболее близким к заявляемому способу является способ монтажа кремниевых кристаллов на покрытую золотом поверхность, патент РФ №5570226. На обратную сторону кристалла наносится слой псевдосплавного покрытия толщиной (20-200) нм, содержащего аморфный кремний и 10-50 вес. % золота. Присоединение кремниевых кристаллов на покрытую золотом поверхность осуществляется методом контактно-реактивной пайки. Однако область применения данного способа ограничена только кремниевыми приборами, поскольку без кремния не будет реализовываться вторая стадия образования паяного шва, связанная с объемным растворением монокристаллического кристалла кремния и золотого покрытия посадочной площадки. Помимо этого, как недостаток следует отметить достаточно высокую температуру монтажа кристалла, порядка 390-410°С, и значительный уровень механических напряжений в кристаллах.
Технической задачей предполагаемого изобретения является получение однородного паяного шва и отсутствие микропор по всей его поверхности.
Технический результат, который требуется достигнуть - возможность получения качественного, надежного соединения кристалла с основанием корпуса при температуре 300-320°С.
Технический результат достигается за счет того, что способ монтажа полупроводниковых кристаллов на покрытую золотом поверхность, включает нанесение на обратную сторону полупроводниковых кристаллов контактного слоя и последующую контактно-реактивную пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса, на эвтектический сплав, причем, нанесенный на обратную сторону полупроводниковых кристаллов, контактный слой содержит последовательно напыленные металлы титан-никель-золото, с толщинами 0,08±0,03 мкм, 0,07±0,03 мкм и 0,04±0,02 мкм, соответственно и нанесенный методом гальванического осаждения сплав золото-олово, толщиной 4-6 мкм, с содержанием золота 70-80%, а пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса осуществляют при температуре 300-320°С в течение 1-2 секунд.
Качество паяных соединений проводилось на основании рентгенограмм для полупроводниковых кристаллов, смонтированных на выводную рамку.
На Фиг. 1 представлена рентгенограмма для монтажа полупроводниковых кристаллов с покрытием Ti-Ni-Au - Сплав Au-Sn, толщиной 4 мкм.
На Фиг. 2 представлена рентгенограмма для монтажа полупроводниковых кристаллов с покрытием Ti-Ni-Au - Сплав Au-Sn, толщиной 6 мкм.
Экспериментально установлено, что сплав золото-олово обладает превосходными характеристиками смачивания, обеспечивает высокую прочность соединения (предел прочности на разрыв 275 МПа), имеет отличную коррозийную стойкость и исключительную теплопроводность (0,57 Вт/(см⋅°С) при 85°С, высокое поверхностное натяжение и нулевой краевой угол смачивания, что делает материал предпочтительным вариантом при последующем монтаже кристалла. Использование гальванически осажденного сплава золото-олово толщиной 4-6 мкм с содержанием золота 70-80%, (в зависимости от условий осаждения и состава электролита), позволяет получить однородное паяное соединение кристалл-корпус с минимальным количеством дефектов и обеспечивает получение надежного контакта кристалл-корпус. Кроме того, гальваническое осаждение сплава золото-олово обладает большей технологичностью, по сравнению с другими способами его получения.
Для оценки качества монтажа кристаллов использовали две группы образцов кристаллов кремниевого полевого транзистора, размером 1,77×0,81×0,2 мм. На образцах первой группы на обратной стороне кристаллов формировалась металлизация титан-никель-золото, с толщинами 0,08±0,03 мкм, 0,07±0,03 мкм и 0,04±0,02 мкм, соответственно с последующим гальваническим осаждением сплава золото-олово, толщиной 4 мкм. На образцах второй группы на обратной стороне кристаллов формировалась металлизация титан-никель-золото, с толщинами 0,08±0,03 мкм, 0,07±0,03 мкм и 0,04±0,02 мкм, соответственно с последующим гальваническим осаждением сплава золото-олово, толщиной 6 мкм.
Пайка полупроводниковых кристалла на покрытую золотом поверхность корпуса для образцов первой и второй групп осуществлялась при температуре 300-320°С в течение 1-2 секунд.
Анализ рентгенограмм паяных соединений (Фиг. 1, Фиг. 2,) подтвердил получение однородных паяных швов и отсутствие микропор по всей их площади. У образцов первой и второй групп смачивание (% контактной площади) составило 85-95%. Техническая задача решена.
Использование предлагаемого способа монтажа полупроводниковых кристаллов позволило получить качественное, надежное соединение при температуре 300-320°С. Технический результат - достигнут полностью.
Получение однородных паяных швов и отсутствие микропор по всей их площади при температуре 300-320°С обеспечивает возможность монтажа полупроводниковых кристаллов большой площади без внесения механических напряжений, позволяет монтировать не только кремниевые, но и арсенид-галлиевые кристаллы полупроводниковых приборов и интегральных микросхем.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ БЕССВИНЦОВОЙ КОНТАКТНО-РЕАКТИВНОЙ ПАЙКИ ПОЛУПРОВОДНИКОВОГО КРИСТАЛЛА К КОРПУСУ | 2006 |
|
RU2313156C1 |
СПОСОБ МОНТАЖА КРЕМНИЕВЫХ КРИСТАЛЛОВ НА ПОКРЫТУЮ ЗОЛОТОМ ПОВЕРХНОСТЬ | 2014 |
|
RU2570226C1 |
СПОСОБ МОНТАЖА КРЕМНИЕВЫХ КРИСТАЛЛОВ НА ПОКРЫТУЮ ЗОЛОТОМ ПОВЕРХНОСТЬ | 2007 |
|
RU2347297C1 |
СПОСОБ БЕССВИНЦОВОЙ КОНТАКТНО-РЕАКТИВНОЙ ПАЙКИ ПОЛУПРОВОДНИКОВОГО КРИСТАЛЛА К КОРПУСУ | 2008 |
|
RU2379785C1 |
СПОСОБ ПРИСОЕДИНЕНИЯ КРИСТАЛЛОВ КРЕМНИЕВЫХ ДИСКРЕТНЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И ИНТЕГРАЛЬНЫХ СХЕМ К КОРПУСУ С ОБРАЗОВАНИЕМ ЭВТЕКТИКИ КРЕМНИЙ-ЗОЛОТО | 2005 |
|
RU2298252C2 |
КОРПУС ПОЛУПРОВОДНИКОВОГО ПРИБОРА | 2009 |
|
RU2405229C2 |
СПОСОБ БЕССВИНЦОВОЙ КОНТАКТНО-РЕАКТИВНОЙ ПАЙКИ ПОЛУПРОВОДНИКОВОГО КРИСТАЛЛА К КОРПУСУ С ОБРАЗОВАНИЕМ ЭВТЕКТИКИ Al-Zn | 2008 |
|
RU2375786C1 |
СИСТЕМА МОНТАЖА ПОЛУПРОВОДНИКОВОГО КРИСТАЛЛА К ОСНОВАНИЮ КОРПУСА | 2009 |
|
RU2480860C2 |
Способ металлизации термокомпенсирующей изолирующей подложки припоем AuSn для пайки полупроводниковых лазерных диодов | 2022 |
|
RU2818934C2 |
Способ изготовления термоэлектрического модуля и термоэлектрический модуль | 2022 |
|
RU2781929C1 |
Изобретение относится к области полупроводниковой микроэлектроники и может быть использовано в производстве полупроводниковых приборов, интегральных и гибридных микросхем. Способ монтажа полупроводниковых кристаллов на покрытую золотом поверхность включает нанесение на обратную сторону полупроводниковых кристаллов контактного слоя и последующую контактно-реактивную пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса на эвтектический сплав. Согласно изобретению нанесенный на обратную сторону полупроводниковых кристаллов контактный слой содержит последовательно напыленные металлы титан-никель-золото, толщиной 0,08±0,03 мкм, 0,07±0,03 мкм и 0,04±0,02 мкм, соответственно и нанесенный методом гальванического осаждения сплав золото-олово толщиной 4-6 мкм, с содержанием золота 70-80%, а пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса осуществляют при температуре 300-320°С в течение 1-2 секунд. Изобретение обеспечивает возможность получения качественного и надежного соединения кристалла с основанием корпуса при температуре монтажа 300-320°С, что обеспечивает возможность монтажа полупроводниковых кристаллов большой площади, а также позволяет монтировать кремниевые и арсенид-галлиевые кристаллы полупроводниковых приборов и интегральных микросхем. 2 ил.
Способ монтажа полупроводниковых кристаллов на покрытую золотом поверхность, включающий нанесение на обратную сторону полупроводниковых кристаллов контактного слоя и последующую контактно-реактивную пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса, на эвтектический сплав, отличающийся тем, что нанесенный на обратную сторону полупроводниковых кристаллов контактный слой содержит последовательно напыленные металлы титан-никель-золото, с толщинами 0,08±0,03 мкм, 0,07±0,03 мкм и 0,04±0,02 мкм соответственно и нанесенный методом гальванического осаждения сплав золото-олово толщиной 4-6 мкм, с содержанием золота 70-80%, а пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса осуществляют при температуре 300-320°С в течение 1-2 секунд.
СПОСОБ МОНТАЖА КРЕМНИЕВЫХ КРИСТАЛЛОВ НА ПОКРЫТУЮ ЗОЛОТОМ ПОВЕРХНОСТЬ | 2014 |
|
RU2570226C1 |
СПОСОБ МОНТАЖА КРЕМНИЕВЫХ КРИСТАЛЛОВ НА ПОКРЫТУЮ ЗОЛОТОМ ПОВЕРХНОСТЬ | 2007 |
|
RU2347297C1 |
СПОСОБ ПАЙКИ ПОЛУПРОВОДНИКОВОГО КРИСТАЛЛА К КОРПУСУ | 1999 |
|
RU2167469C2 |
JP 2015097149 A, 23.02.2015 | |||
US 5089439 A, 18.02.1992 | |||
US 4772935 A, 20.09.1988. |
Авторы
Даты
2020-02-18—Публикация
2019-05-21—Подача