Способ изготовления многоплощадочного кремниевого pin-фоточувствительного элемента с низким уровнем темновых токов Российский патент 2020 года по МПК H01L31/18 

Описание патента на изобретение RU2716036C1

Изобретение относится к технологии изготовления кремниевых pin-фоточувствительных элементов (ФЧЭ), чувствительных к излучению с длиной волны 1,06 мкм. Они предназначены для использования в различной электронно-оптической аппаратуре, в которой требуется регистрация коротких импульсов лазерного излучения (10-40 не) при напряжениях смещения порядка 200 В. К такой аппаратуре относятся лазерные дальномеры, системы наведения по лучу, обнаружители лазерного излучения, системы защиты от лазерного оружия, высокоточное оружие и другие системы [А.М. Филачев, И.И. Таубкин, М.А. Тришенков. Твердотельная фотоэлектроника. Физические основы. М.: Физматкнига, 2007 г., 384 с].

Задачей предлагаемого изобретения является снижение уровня темновых токов, увеличение процента выхода годных.

Известен кремниевый pin-фотодиод [патент на полезную модель РФ №108883, заявитель ФГУП «НПО «Орион»], чувствительный к длине волны 1,06 мкм, способ изготовления которого принят в качестве прототипа.

Известен способ изготовления кремниевого многоплощадочного pin-фоточувствительного элемента (ФЧЭ) с низким уровнем темновых токов [патент на изобретение РФ №2654961, заявитель АО «НПО «Орион»], который принят в качестве ближайшего аналога. Изготовление ФЧЭ включает в себя следующие технологические операции:

- ионная имплантация бора в тыльную поверхность подложки;

- длительная разгонка бора;

- термическое окисление;

- диффузия фосфора для создания областей фоточувствительных площадок и охранного кольца;

- разгонка фосфора с одновременным окислением для выращивания защитной пленки двуокиси кремния;

- ионная имплантация аргона и диффузия фосфора в тыльную поверхность подложки для геттерирования загрязняющих примесей;

- удаление геттерирующего слоя;

- диффузия бора в тыльную поверхность подложки для создания контактного слоя р+-типа проводимости;

- химическое травление пленки двуокиси кремния для получения просветляющего покрытия;

- создание двухслойных омических контактов к фоточувствительным площадкам, охранному кольцу и тыльному слою р+-типа проводимости методом напыления пленки золота с подслоем хрома, причем толщина пленки хрома на тыльном слое составляет 5-6 нм.

Недостатком этих приборов является то, что величина темновых токов для некоторых применений не может обеспечить требуемую пороговую чувствительность фотоприемного устройства.

Предлагаемый способ изготовления позволяет снизить уровень темновых токов, а также повысить процент выхода годных ФЧЭ.

Известно, что примеси тяжелых металлов, таких как Au, Fe и Cu и микродефекты, декорированные этими примесями, вводят генерационно-рекомбинационные центры в запрещенной зоне кремния. Эти центры приводят к уменьшению времени жизни неосновных носителей заряда и увеличению темновых токов ФЧЭ. Для удаления микродефектов и примесей металлов из активной части приборов на пластине применяется процесс геттерирования.

В способе изготовления ФЧЭ - аналога используется комплексное геттерирование нарушенными слоями на тыльной поверхности подложки, созданными имплантацией аргона и загонкой фосфора при температуре Т=1000°С, и последующим отжигом в течение 1 часа при этой же температуре. В предлагаемом способе геттерирование проводится в две стадии.

На первой стадии проводится геттерирование фосфором, включающим в себя загонку фосфора при температуре Т=1100°С в течение 20 минут, отжиг при этой же температуре в течение 1 часа и последующее удаление образовавшегося фосфорно-силикатного стекла. На второй стадии проводится геттерирование имплантированным аргоном с последующим отжигом в течение 1 часа при температуре Т=1000°С.

Процесс геттерирования фосфором при повышенной температуре более эффективен, так как за счет более высокой поверхностной концентрации фосфора повышается плотность образующихся дислокаций несоответствия, которые геттерируют из пластины точечные дефекты и примеси. Измеренные глубина p-n-перехода на тыльной стороне пластины hj и поверхностное сопротивление n+-слоя Rs составляют 4 мкм и 1,2 Ом/кв. см соответственно. Тогда сопротивление n+-слоя р=RS*hj=1,2*4*10-4≈0,0005 Ом*см. Такому уровню сопротивления соответствует достаточно высокая плотность дислокаций (105-106) см-2 [К. Рейви «Дефекты и примеси в полупроводниковом кремнии», Москва, «Мир», 1984, стр. 79].

Эффективность геттерирования увеличивается также за счет того, что повышенная концентрация фосфора в n+-слое и слое фосфорно-силикатного стекла, образующемся во время геттерирования, обеспечивает большую растворимость в них примесей тяжелых металлов. При удалении фосфорно-силикатного стекла вместе с ним удаляются и растворенные в нем примеси.

Известна работа [А.К. Будтолаев, И.А. Евлентьев, Г.В. Либерова, С.Д. Сиваченко, В.Е. Степанюк, Журнал «Прикладная физика», 2015, №6, стр. 80-81], в которой проведено сравнение методов геттерирования нарушенными слоями и показано, что при изготовлении pin-фотодиодов наряду с диффузией фосфора также эффективен метод ионной имплантации аргона с последующим термическим отжигом.

Геттерирование аргоном в предлагаемом способе изготовления ФЧЭ может быть более эффективно по сравнению с аналогом за счет того, что:

- имплантация аргона проводится в поверхность, уже частично очищенную в процессе геттерирования фосфором;

- на структурные нарушения, создаваемые диффузией фосфора, накладываются нарушения, вносимые имплантацией аргона, и за счет этого во время повторного геттерирования эффективно удаляются примеси тяжелых металлов.

Режимы геттерирования: доза имплантации аргона D=2*1015 см-2; энергия Е=100 кэВ; температура отжига Т=1000°С, время отжига 1 час.

Предлагаемый способ изготовления pin-ФЧЭ включает в себя следующие технологические операции:

1 ионная имплантация бора в тыльную поверхность подложки;

2 длительная разгонка бора;

3 термическое окисление;

4 диффузия фосфора для создания областей фоточувствительных площадок и охранного кольца;

5 разгонка фосфора с одновременным окислением для выращивания защитной пленки двуокиси кремния;

6 геттерирование для удаления загрязняющих примесей, включающее в себя:

- загонку фосфора в тыльную сторону пластины при температуре 1100°С в течение 20 минут и последующий отжиг в течение 1 часа;

- удаление фосфорно-силикатного стекла с тыльной стороны пластины;

- ионную имплантацию аргона в обратную сторону пластины: доза D=2*1015 cm-2; энергия Е=100 кэВ;

- термический отжиг при температуре 1000°С в течение 1 часа;

7 удаление гетерирующего слоя.

8 диффузия бора в тыльную поверхность подложки для создания контактного слоя р+-типа проводимости;

9 химическое травление пленки двуокиси кремния для получения просветляющего покрытия;

10 создание двухслойных омических контактов к фоточувствительным площадкам, охранному кольцу и тыльному слою p+-типа проводимости методом напыления пленки золота с подслоем хрома, причем толщина пленки хрома на тыльном слое составляет 5-6 нм.

Структура ФЧЭ, представлена на рисунке фиг. 1, где 1 - фоточувствительная площадка n+-типа проводимости; 2- охранное кольцо n+-типа проводимости; 3, 4 - защитная и просветляющая пленки двуокиси кремния; 5 - база ФЧЭ; 6 - ОПЗ, 7 - контактный слой p+-типа проводимости; 8, 9 - контактная система Au-Cr к n+- и р+-областям.

Пример.

По предлагаемому способу были изготовлены 8-и площадочные фоточувствительные элементы на пластинах кремния p-типа проводимости. Для сравнения также были изготовлены ФЧЭ, у которых геттерирование проводилось стандартным методом и одностадийным методом загонки фосфора при температуре Т=1100°С и последующим отжигом при этой же температуре в течение 1 часа. В таблице 1. Приведены результаты измерения величины плотности темновых токов IT, а также процент выхода годных изделий.

Из данных таблицы следует, что:

- образцы, изготовленные по предлагаемому методу геттерирования превосходят по своим параметрам образцы, изготовленные по стандартному методу геттерирования и одностадийному методу геттерирования диффузией фосфора;

- геттерирование аргоном вносит существенный вклад в снижение величины плотности темновых токов.

Похожие патенты RU2716036C1

название год авторы номер документа
Способ изготовления многоплощадочного быстродействующего кремниевого pin-фоточувствительного элемента 2017
  • Будтолаев Андрей Константинович
  • Либерова Галина Владимировна
  • Рыбаков Андрей Викторович
  • Степанюк Владимир Евгеньевич
  • Хакуашев Павел Евгеньевич
RU2654961C1
Способ изготовления многоплощадочного кремниевого pin-фоточувствительного элемента 2017
  • Будтолаев Андрей Константинович
  • Либерова Галина Владимировна
  • Рыбаков Андрей Викторович
  • Хакуашев Павел Евгеньевич
RU2654998C1
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО p-i-n ФОТОДИОДА 2014
  • Демидов Станислав Стефанович
  • Денисов Сергей Иванович
  • Климанов Евгений Алексеевич
  • Нури Марина Александровна
RU2541416C1
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО p-i-n ФОТОДИОДА 2013
  • Демидов Станислав Стефанович
  • Климанов Евгений Алексеевич
RU2532594C1
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО p-i-n ФОТОДИОДА 2013
  • Демидов Станислав Стефанович
  • Денисов Сергей Иванович
  • Климанов Евгений Алексеевич
  • Нури Марина Александровна
RU2537087C1
СПОСОБ ИЗГОТОВЛЕНИЯ pin-ФОТОДИОДОВ С ОХРАННЫМ КОЛЬЦОМ НА ВЫСОКООМНОМ р-КРЕМНИИ 2013
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Евстафьева Наталья Игоревна
  • Карпенко Елена Федоровна
  • Лихачёв Геннадий Михайлович
  • Филипенко Наталия Васильевна
RU2548609C1
Способ изготовления кремниевого фотодиода 2018
  • Вильдяева Мария Николаевна
  • Климанов Евгений Алексеевич
RU2689972C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ pin-ФОТОДИОДОВ БОЛЬШОЙ ПЛОЩАДИ НА ВЫСОКООМНОМ p-КРЕМНИИ 2013
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Евстафьева Наталья Игоревна
  • Карпенко Елена Федоровна
  • Лихачёв Геннадий Михайлович
  • Крайтерман Евгения Зиновьевна
RU2544869C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА КОРОТКОПРОБЕЖНЫХ ЧАСТИЦ 2008
  • Еремин Владимир Константинович
  • Вербицкая Елена Михайловна
  • Еремин Игорь Владимирович
  • Тубольцев Юрий Владимирович
  • Егоров Николай Николаевич
  • Голубков Сергей Александрович
  • Коньков Константин Анатольевич
RU2378738C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЕНСОРА ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ И СВЕТА 2023
  • Веретенников Денис Александрович
  • Голубков Сергей Александрович
  • Григорьева Татьяна Валерьевна
  • Петушков Василий Леонидович
  • Рзаев Эмиль Мунасибович
RU2820464C1

Иллюстрации к изобретению RU 2 716 036 C1

Реферат патента 2020 года Способ изготовления многоплощадочного кремниевого pin-фоточувствительного элемента с низким уровнем темновых токов

Изобретение относится к технологии изготовления кремниевых pin-фоточувствительных элементов (ФЧЭ), чувствительных к излучению с длиной волны 1,06 мкм. Они предназначены для использования в различной электронно-оптической аппаратуре, в которой требуется регистрация коротких импульсов лазерного излучения (10-40 не) при напряжениях смещения порядка 200 В. Способ изготовления многоплощадочного кремниевого pin-фоточувствительного элемента включает ионную имплантацию бора и разгонку в тыльную поверхность подложки, термическое окисление, диффузию и разгонку фосфора для создания областей фоточувствительных площадок и охранного кольца с одновременным окислением формирования защитной пленки двуокиси кремния, ионную имплантацию аргона и диффузию фосфора в тыльную поверхность подложки для геттерирования, удаление геттерирующего слоя, диффузию бора в тыльную поверхность подложки для создания контактного слоя р+-типа проводимости, химическое травление пленки двуокиси кремния для получения просветляющего покрытия, создание двухслойных золотых омических контактов к фоточувствительным площадкам, охранному кольцу и тыльному слою р+-типа проводимости, при этом согласно изобретению проводится двухстадийное геттерирование для удаления загрязняющих примесей, включающее в себя загонку фосфора в тыльную сторону пластины при температуре 1100°С в течение 20 минут и последующий отжиг в течение 1 часа, удаление фосфоросиликатного стекла с тыльной стороны пластины, ионную имплантацию аргона в тыльную сторону пластины с дозой 2⋅1015 см-2 и энергией 100 кЭв, термический отжиг при температуре 1000°С в течение 1 часа. Изобретение обеспечивает снижение уровня темновых токов. 1 ил., 1 табл., 1 пр.

Формула изобретения RU 2 716 036 C1

Способ изготовления многоплощадочного кремниевого pin-фоточувствительного элемента с низким уровнем темновых токов, включающий операции: ионная имплантация бора в тыльную поверхность подложки; длительная разгонка бора; термическое окисление; диффузия фосфора для создания областей фоточувствительных площадок и охранного кольца; разгонка фосфора с одновременным окислением для выращивания защитной пленки двуокиси кремния; ионная имплантация аргона и диффузия фосфора в тыльную поверхность подложки для геттерирования загрязняющих примесей; удаление геттерирующего слоя; диффузия бора в тыльную поверхность подложки для создания контактного слоя р+-типа проводимости; химическое травление пленки двуокиси кремния для получения просветляющего покрытия; создание двухслойных омических контактов к фоточувствительным площадкам, охранному кольцу и тыльному слою р+-типа проводимости методом напыления пленки золота с подслоем хрома, причем толщина пленки хрома на тыльном слое составляет 5-6 нм, отличающийся тем, что для снижения уровня темновых токов ФЧЭ и увеличения процента выхода годных проводится двухстадийное геттерирование для удаления загрязняющих примесей, включающее в себя загонку фосфора в тыльную сторону пластины при температуре 1100°С в течение 20 минут и последующий отжиг в течение 1 часа, удаление фосфоросиликатного стекла с тыльной стороны пластины, ионную имплантацию аргона в тыльную сторону пластины с дозой 2⋅1015 см-2 и энергией 100 кЭв, термический отжиг при температуре 1000°С в течение 1 часа.

Документы, цитированные в отчете о поиске Патент 2020 года RU2716036C1

Способ изготовления многоплощадочного быстродействующего кремниевого pin-фоточувствительного элемента 2017
  • Будтолаев Андрей Константинович
  • Либерова Галина Владимировна
  • Рыбаков Андрей Викторович
  • Степанюк Владимир Евгеньевич
  • Хакуашев Павел Евгеньевич
RU2654961C1
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО p-i-n ФОТОДИОДА 2014
  • Демидов Станислав Стефанович
  • Денисов Сергей Иванович
  • Климанов Евгений Алексеевич
  • Нури Марина Александровна
RU2541416C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ pin-ФОТОДИОДОВ БОЛЬШОЙ ПЛОЩАДИ НА ВЫСОКООМНОМ p-КРЕМНИИ 2013
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Евстафьева Наталья Игоревна
  • Карпенко Елена Федоровна
  • Лихачёв Геннадий Михайлович
  • Крайтерман Евгения Зиновьевна
RU2544869C1
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО p-i-n ФОТОДИОДА 2013
  • Демидов Станислав Стефанович
  • Денисов Сергей Иванович
  • Климанов Евгений Алексеевич
  • Нури Марина Александровна
RU2537087C1
US 200916200 A1, 15.01.2015.

RU 2 716 036 C1

Авторы

Галашин Артем Викторович

Либерова Галина Владимировна

Манжуло Дарья Григорьевна

Даты

2020-03-05Публикация

2019-06-10Подача