Способ переработки гидролизной кислоты Российский патент 2020 года по МПК C01B17/90 B01J41/04 C22B3/38 C22B3/42 C22B59/00 C01G23/53 B01D11/04 C08J11/00 

Описание патента на изобретение RU2716693C1

Изобретение относится к переработке отходов производства диоксида титана сульфатным способом с получением продуктов используемых в химической, металлургической, электронной промышленности.

Сернокислотный метод производства диоксида титана из ильменита и титановых шлаков имеет ряд существенных недостатков - сложная многостадийная схема и значительное количество отходов - загрязненная примесями гидролизная серная кислота (ГСК).

Гидролизную кислоту после концентрирования нельзя возвращать в производственный цикл, из-за присутствующей в ней взвеси гидроксида титана, которая может стать причиной преждевременного гидролиза растворов.

Из методов утилизации ГСК наиболее изученным является метод термического разложения с получением SO2 и нейтрализации известковым молоком с получением гипса для стройматериалов и попутным извлечением гидроксида титана [Гимаев Р.Н., Кондаков Д.И., Сюняев З.И. и др. Современные методы утилизации сернокислотных отходов нефтепереработки и нефтехимии. М.: ЦНИИТЭНефтехим, 1973. - 97с.]. Недостатком данного метода является то, что переработка такого вида отходов (при переработке ильменитовых концентратов на 1 т TiO2 получается до 5 м3 ГСК), связана с большими дополнительными затратами, которые лишь частично компенсируются стоимостью полученных продуктов. Кроме того, при использовании данного метода безвозвратно теряются некоторые редкоземельные металлы, переходящие в ГСК из ильменита, например, скандий.

Наиболее практичным вариантом было бы возвращение ГСК в производственный цикл и, следовательно, сокращение ее общего потребления.

Предложен экстракционный способ [Еденбаев Б.Е., Стряпков А.В., Байков Х,И. Исследование экстракции серной кислоты три-н-октиламином. - Караганда: АН Каз. ССР. - 1974. - 26 с. - Деп. в ВИНИТИ. - 1978. - №207-75.] извлечения серной кислоты техническим три-н-октиламином из ГСК. В качестве экстрагента использовали растворы технического три-н-октиламина в керосине (1:1) и в трибутилфосфате (ТБФ) (1:1) с добавкой 5 об. % высшего спирта (н-гексилового спирта) или без его добавки. Экстрагент регенерировали отмывкой содовым раствором (60 г/дм3), 1 н. раствором едкого натра и водой. Время контакта фаз во всех случаях составляло 10 мин. Органическая фаза отмывалась от кислоты в одну ступень, разделение фаз было удовлетворительное. Варьируя отношением О:В на стадии реэкстракции, авторы показали возможность получения очищенных растворов H2SO4 с концентрацией 56-78 кг/м3.

Недостатком данного метода является большая растворимость органических экстрагентов и растворителей, что будет приводить к загрязнению как рафинатов экстракции, так и очищенной серной кислоты органическими продуктами. Данный метод, так же, не позволяет извлекать, достаточно дорогой скандий присутствующий в ГСК в количестве до 20 мг/дм3, что в двадцать раз превышает концентрацию скандия в растворах от переработки урановых руд – основного промышленного источника получения скандия.

Известен способ получения оксида скандия из сбросного раствора гидролизной кислоты производства пигментного диоксида титана сернокислотным способом (Фаворская Л.В., Кошулько Л.П., Преснецова В.А. Технология минерального сырья: Сб. статей. Вып. 2. Алма-Ата. Мингео Каз. ССР, 1975, С. 67-73.). При реализации способа скандий выделяют с помощью экстракции раствором ди(2-этилгексил)фосфорной кислоты (Ди2ЭГФК) 0,4 моль/л в керосине и соотношении фаз О:В = 1:100. Скандий реэкстрагируют твёрдым фтористым натрием (NaF). Содержание Sc2O3 в конечном продукте составило до 61%.

Недостатком данного способа является использование экстрагента Ди2ЭГФК, который, несмотря на то, что имеет большую ёмкость по Sc, но обладает незначительной селективностью по Sc в присутствии таких элементов как титан, цирконий, торий, РЗЭ, ванадий. В результате получается достаточно грязный оксид скандия. Кроме того, данный Экстрагент, при его использовании в технологии, проявляет склонность к эмульгированию, что затрудняет его эффективное использование; метод не позволяет извлекать титан из ГСК и регенерировать саму ГСК.

Известен способ получения концентрата скандия при сернокислотной переработке отходов алюминиевого производства (Weiwei Wang, Yoko Pranolo, Chu Yong Cheng Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA // Separation and Purification Technology 108 (2013) 96–102), включающий экстракцию скандия из сернокислого раствора на экстрагенте состоящем из смеси Ди2ЭГФК и ТБФ, с получением насыщенного экстрагента и рафината экстракции, промывку насыщенного экстрагента раствором H2SO4 = 50-200 г/дм3 и перекиси водорода (H2O2) = 5-20 г/дм3, реэкстракцию скандия раствором состоящим из смеси NaOH и Na2CO3, с получением концентрата скандия.

Несмотря на такие эффективные технологические приёмы как: использование смеси Ди2ЭГФК и ТБФ для понижения эмульгирования органической фазы, дополнительная очистка от ионов титана за счёт введения в промывной сернокислый раствор перекиси водорода, к недостаткам данного способа следует отнести невозможность попутного извлечения титана и очистку ГСК.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ переработки жидких отходов производства диоксида титана (Патент РФ №2651019, дат. рег. 18.04.2018г., «Способ переработки жидких отходов производства диоксида титана», Рычков В.Н., Кириллов Е.В., Кириллов С.В., Буньков Г.М., Боталов М.С., Смирнов А.Л., Машковцев М.А., Смышляев Д.В., заявка №2016137413, опубл. 19.09.2016 г.), где, согласно изобретению, сначала из гидролизной кислоты извлекают скандий методом жидкостной экстракции, далее из гидролизной кислоты извлекают серную кислоту сорбцией на низкоосновном поликонденсационном анионите, после чего из маточника сорбции серной кислоты извлекают титан сорбцией на низкоосновном полимеризационном анионите.

Преимуществом данного способа является комплексность переработки гидролизной кислоты с извлечением всех ценных компонентов и возвратом серной кислоты в основное производство. Однако, ввиду того, что гидролизная кислота является сложным в химическом плане продуктом, с большим содержанием солей, то после операции извлечения кислоты в оставшемся слабокислом растворе может наблюдаться эффект окисления железа (II) до железа (III). Полученное железо (III) в слабокислой среде начинает гидролизоваться с получением объемного студенистого осадка. В виду значительного содержания железа (II) в гидролизной кислоте это может привести к исчезновению текучести слабокислого раствора и получению вместо раствора студенистого осадка гидроксида железа (III). Если допустить протекание такого процесса, то дальнейшее извлечение титана, после извлечения серной кислоты, станет невозможным.

В основу изобретения положена задача, по созданию эффективного комплексного технологического процесса переработки жидких отходов производства диоксида титана.

При этом, техническим результатом заявляемого изобретения является, увеличение извлечения и чистоты получаемых продуктов.

Заявляемый технический результат достигается тем, что в способе переработки гидролизной кислоты, согласно изобретению, маточник сорбции серной кислоты обрабатывают фосфористой кислотой или солями ее щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана и маточника фильтрации фосфата титана, где фосфат титана является конечным продуктом, а маточник фильтрации фосфата титана утилизируют.

Использование фосфористой кислоты или солей ее щелочных металлов и аммония, на данной операции, позволит как стабилизировать железо (II) в слабокислотном растворе после извлечения серной кислоты из гидролизной кислоты за счет восстановительных функций фосфористой кислоты и солей ее щелочных металлов и аммония, так и перевести в осадок титан за счет образования труднорастворимого фосфата титана.

Добавка фосфористой кислоты или солей ее щелочных металлов и аммония, взятых в мольном соотношении менее 0,5 от содержания титана, не позволит достаточно полно выделить титан в виде осадка фосфата титана, а также создать восстановительную среду, препятствующую окислению железа (II) до железа (III). Добавка фосфористой кислоты или солей ее щелочных металлов и аммония, взятых в мольном соотношении более 3 от содержания титана, будет приводить к соосаждению фосфатов железа (II) с фосфатом титана и тем самым загрязнять фосфат титана, усложняя его дальнейшую переработку.

Осуществление заявляемого способа подтверждается следующими примерами.

Пример 1.

Гидролизную серную кислоту, согласно прототипу, приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объема раствора через объем анионита в час до полного насыщения. Далее, полученный раствор разделяли на несколько равных частей и добавляли в каждую из них фосфористую кислоту в различном мольном соотношении относительно содержания титана. Полученную суспензию фильтровали. Маточник фильтрации анализировали.

Таблица 1

Концентрация элементов после добавления фосфористой кислоты при мольном соотношении фосфористая кислота : титан H2SO4 Fe Ti Si Концентрация элементов перед добавлением фосфористой кислоты в маточник сорбции серной кислоты г/дм3 20 39 5 1 0,1 20 39 4,5 1 0,5 20 39 1,1 0,9 1 20 39 0,7 0,8 3 20 37 0,6 0,9 4 20 30 0,5 0,9

Из данных, приведенных в таблице 1 видно, что заданный интервал мольного соотношения фосфористой кислоты и титана позволяет перевести в осадок практически весь титан, при этом примеси остаются в растворе.

Пример 2.

Гидролизную серную кислоту приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объема раствора через объем анионита в час до полного насыщения. Далее, полученный раствор разделяли на несколько равных частей и добавляли в каждую из них аммонийную, натриевую и калиевую соль фосфористой кислоты взятыми в мольном соотношении относительно содержания титана как 1:1 каждая. Полученную суспензию фильтровали. Маточник фильтрации анализировали.

Таблица 2

Концентрация элементов после добавления фосфористой кислоты при мольном соотношении фосфористая кислота : титан H2SO4 Fe Ti Si Концентрация элементов перед добавлением фосфористой кислоты в маточник сорбции серной кислоты г/дм3 20 39 5 1 Аммонийная соль (NH4)2HPO3 20 37 0,6 1 Натриевая соль Nа2HPO3 20 38 0,7 0,9 Калиевая соль K2HPO3 20 39 0,6 0,9

Из данных, приведенных в таблице 2 видно, что использование взамен фосфористой кислоты солей её щелочных металлов так же приводит к эффективному осаждению фосфата титана.

Похожие патенты RU2716693C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ОТХОДОВ ПРОИЗВОДСТВА ДИОКСИДА ТИТАНА 2016
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Смирнов Алексей Леонидович
  • Машковцев Максим Алексеевич
  • Смышляев Денис Валерьевич
RU2651019C2
СПОСОБ ПЕРЕРАБОТКИ ГИДРОЛИЗНОЙ СЕРНОЙ КИСЛОТЫ 2018
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Машковцев Максим Алексеевич
  • Берескина Полина Анатольевна
  • Буйначев Сергей Владимирович
RU2709369C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КОНЦЕНТРАТА СКАНДИЯ 2015
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Попонин Николай Анатольевич
  • Смирнов Алексей Леонидович
  • Машковцев Максим Алексеевич
RU2618012C2
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КОНЦЕНТРАТА СКАНДИЯ 2017
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Попонин Николай Анатольевич
  • Смирнов Алексей Леонидович
  • Смышляев Денис Валерьевич
RU2647047C1
Способ извлечения концентрата скандия из скандийсодержащих кислых растворов 2018
  • Нечаев Андрей Валерьевич
  • Шестаков Сергей Владимирович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
RU2685833C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СИДЕРИТОВЫХ РУД 2022
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Смышляев Денис Валерьевич
  • Боталов Максим Сергеевич
  • Таукин Асланбек Оразбаевич
  • Дудчук Игорь Анатольевич
RU2795929C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2014
  • Нечаев Андрей Валерьевич
  • Козырев Александр Борисович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Петракова Ольга Викторовна
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2582425C1
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА 2018
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Попонин Николай Анатольевич
  • Смирнов Алексей Леонидович
  • Смышляев Денис Валерьевич
  • Титова Светлана Михайловна
  • Свирский Илья Анатольевич
RU2684663C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ 2016
  • Гедгагов Эдуард Измайлович
  • Тарасов Андрей Владимирович
  • Гиганов Владимир Георгиевич
RU2613246C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ, ТВЕРДЫЙ ЭКСТРАГЕНТ (ТВЭКС) ДЛЯ ЕГО ИЗВЛЕЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ТВЭКСа 2009
  • Горохов Дмитрий Степанович
  • Попонин Николай Анатольевич
  • Кукушкин Юрий Михайлович
  • Казанцев Владимир Петрович
RU2417267C1

Реферат патента 2020 года Способ переработки гидролизной кислоты

Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение скандия из гидролизной серной кислоты методом жидкостной экстракции, извлечение серной кислоты сорбцией на низкоосновном поликонденсационном анионите с получением маточника сорбции серной кислоты, который для предотвращения окисления железа и одновременно извлечения титана обрабатывают фосфористой кислотой или солями её щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана в качестве конечного продукта и маточника фильтрации фосфата титана, который утилизируют. Техническим результатом изобретения является увеличение извлечения и чистоты получаемых продуктов. 2 табл., 2 пр.

Формула изобретения RU 2 716 693 C1

Способ переработки гидролизной кислоты, включающий последовательное извлечение скандия из гидролизной кислоты методом жидкостной экстракции, далее извлечение серной кислоты сорбцией на низкоосновном поликонденсационном анионите, после чего из маточника сорбции серной кислоты извлекают титан, отличающийся тем, что титан извлекают путем обработки маточника сорбции серной кислоты фосфористой кислотой или солями её щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана и маточника фильтрации фосфата титана, где фосфат титана является конечным продуктом, а маточник фильтрации фосфата титана утилизируют.

Документы, цитированные в отчете о поиске Патент 2020 года RU2716693C1

СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ОТХОДОВ ПРОИЗВОДСТВА ДИОКСИДА ТИТАНА 2016
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Смирнов Алексей Леонидович
  • Машковцев Максим Алексеевич
  • Смышляев Денис Валерьевич
RU2651019C2
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2014
  • Нечаев Андрей Валерьевич
  • Козырев Александр Борисович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Петракова Ольга Викторовна
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2582425C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО ПРОДУКТИВНОГО РАСТВОРА 2015
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Попонин Николай Анатольевич
  • Смирнов Алексей Леонидович
  • Смышляев Денис Валерьевич
RU2612107C2

RU 2 716 693 C1

Авторы

Рычков Владимир Николаевич

Кириллов Евгений Владимирович

Кириллов Сергей Владимирович

Буньков Григорий Михайлович

Боталов Максим Сергеевич

Смирнов Алексей Леонидович

Смышляев Денис Валерьевич

Даты

2020-03-13Публикация

2018-11-27Подача