Щелевое уплотнение-демпфер центробежного насоса Российский патент 2020 года по МПК F04D29/16 F16J15/44 

Описание патента на изобретение RU2717482C1

Изобретение относится к области насосостроения и может быть использовано в турбонасосостроении (ТНА) ЖРД и в авиационной технике, где необходима высокая надежность центробежного насоса при многократном запуске насоса и на переходных режимах работы по оборотам.

Известна конструкция классического щелевого уплотнения колеса центробежного насоса (см. книгу под редакцией профессора Г.Г. Гахуна «Конструкция и проектирование жидкостных ракетных двигателей», г. Москва, «Машиностроение», 1989 г, стр. 238, рис. 10.35а).

Так же известна конструкция высокооборотного центробежного электронасоса ЖРД малой тяги межорбитального транспортного корабля, взятого за прототип (см. книгу под редакцией профессора Г.Г. Гахуна «Конструкция и проектирование жидкостных ракетных двигателей», г. Москва, «Машиностроение», 1989 г, стр. 207, рис. 10.9).

В данной конструкции в качестве опор применяются шариковые подшипники качения. Недостатком данной конструкции центробежного электронасоса является ограниченная работоспособность подшипников качения при многократных включениях для подачи компонентов в камеры сгорания корректирующих ЖРД малой тяги и с длительными перерывами между запусками. Это объясняется тем, что при каждом начале запуска подшипники работают «всухую», без охлаждения компонентом, т.к. после останова компонент удаляется из полости насоса и, соответственно, из подшипников. При запуске «всухую» в первую очередь изнашивается сепаратор, что и уменьшает ресурс работы подшипника и всего насоса. Поэтому для высокооборотных и высокоресурсных насосов ТНА ЖРД при большом количестве пусков и остановов целесообразно применять бесконтактные подшипники (гидростатические или гидродинамические подшипники скольжения (см. книгу под редакцией профессора Г.Г. Гахуна «Конструкция и проектирование жидкостных ракетных двигателей», г. Москва, «Машиностроение», 1989 г, стр. 253, рис. 10.48).

Следует отметить, что большинство роторов центробежных насосов конструктивно выполнены «гибкими», т.е. во время роста оборотов ротор проходит первую критическую скорость вращения - это резонансные обороты, когда наблюдается наибольший прогиб вала насоса. При этом резко возрастают радиальные нагрузки на подшипники качения и возникает возможность механического касания уплотнительного выступа (буртика) колеса о плавающее кольцо, что может привести к разрушению как подшипника, так и плавающего кольца (см. книгу под редакцией профессора Г.Г. Гахуна «Конструкция и проектирование жидкостных ракетных двигателей», г. Москва, «Машиностроение», 1989 г, стр. 304, рис. 11.30).

Для повышения работоспособности и безопасного прохождения ротором резонансного участка запуска широко применяются конструкции опор, где подшипник связан с корпусом насоса через упругое демпферное кольцо (см. книгу под редакцией профессора Г.Г. Гахуна «Конструкция и проектирование жидкостных ракетных двигателей», г. Москва, «Машиностроение», 1989 г, стр. 251, рис. 10.47а).

Однако в высокооборотных и высокоресурсных насосах ТНА ЖРД применение упругих демпферных колес невозможно из-за конструктивных особенностей бесконтактных подшипниковых опор и их особенностей работы.

Изобретение решает задачу обеспечения надежной работы центробежного насоса при прохождении первой критической (резонансной) скорости вращения методом гашения энергии колебания вращающегося в бесконтактных подшипниках ротора центробежного насоса.

Для этого в щелевом уплотнении центробежного насоса плавающее кольцо выполнено из отдельных секторов, а между уплотнительной поверхностью корпуса насоса и плавающим колесом коаксиально установлено упругое демпферное кольцо.

При таком исполнении щелевого уплотнения центробежного насоса упругое демпферное кольцо гасит энергию колебания ротора центробежного насоса при прохождении первой (резонансной) критической скорости вращения и обеспечивает безаварийную работу насоса при наборе оборотов и при останове, устраняя механическое касание выступа центробежного колеса об плавающее кольцо.

Изобретение поясняется чертежами:

На Фиг. 1 - продольный разрез щелевого уплотнения-демпфера центробежного насоса; на Фиг. 2 - поперечный разрез щелевого уплотнения, сделанный по сечению А-А; на Фиг. 3-конструкторские варианты выполнения плавающего кольца на отдельные сектора, на Фиг. 4 -конфигурация упругого демпферного кольца (пример конструкторского исполнения).

Щелевое уплотнение-демпфер центробежного насоса включает корпус насоса 1 с уплотнительной поверхностью 2, плавающее кольцо 3 с отдельными секторами 6, центробежное колесо насоса 4 с уплотнительным выступом (буртиком) 5 и упругое демпферное кольцо 7.

В процессе роста оборотов ротора центробежного насоса (частота вращения) обороты приближаются к критическим оборотам (резонансной частоте колебания ротора). При прохождении критических чисел оборотов происходит максимальный изгиб ротора, что ведет к изменению радиального зазора между уплотнительным выступом 5 центробежного насоса 4 и внутренней поверхностью плавающего кольца 3. С одной стороны, указанный зазор уменьшается, а с противоположной стороны зазор увеличивается. В уменьшенном зазоре давление рабочей жидкости падает, а в увеличенном зазоре давление вырастает, что приводит к появлению перепада давления рабочей жидкости и возникновению радиальной силы, которая воздействует на плавающее кольцо. Вследствие того, что плавающее кольцо 3 выполнено из отдельных секторов 6, оно может изменять свою геометрию и в зоне деформации передавать радиальную силу на упругое демпферное кольцо 7, вызывая его упругую деформацию. Таким образом упругая деформация кольца 7 гасит энергию колебания ротора и уменьшает амплитуду колебания ротора центробежного насоса при прохождении первой критической скорости вращения. Все зазоры между отдельными щелевого уплотнения-демпфера выбираются конструктивно в процессе доводки насоса.

Использование изобретения позволит повысить надежность работы центробежного насоса на бесконтактных подшипниках за счет уменьшения прогиба ротора при прохождении критических (резонансных) чисел оборотов (уменьшения амплитуды колебаний) и устранения механического касания уплотнительного выступа 5 центробежного колеса 4 о внутреннюю поверхность плавающего кольца 3.

Похожие патенты RU2717482C1

название год авторы номер документа
ЛАБИРИНТНОЕ УПЛОТНЕНИЕ-ДЕМПФЕР ГАЗОВОЙ ТУРБИНЫ 2016
  • Позняк Михаил Иванович
  • Каширин Анатолий Иванович
RU2650013C2
ТУРБОНАСОСНЫЙ АГРЕГАТ 2014
  • Позняк Михаил Иванович
RU2573440C1
ТУРБОНАСОСНЫЙ АГРЕГАТ 2016
  • Позняк Михаил Иванович
  • Каширин Анатолий Иванович
RU2614911C1
Центробежная турбина 2016
  • Позняк Михаил Иванович
  • Каширин Анатолий Иванович
  • Новиков Владимир Иванович
RU2633974C1
УПРУГО-ДЕМПФЕРНАЯ ОПОРА РОТОРА 2016
  • Кравченко Анатолий Георгиевич
  • Попов Виктор Иванович
  • Лодыгин Андрей Владимирович
RU2622161C1
ЦЕНТРОБЕЖНЫЙ НАСОС 2015
  • Позняк Михаил Иванович
  • Каширин Анатолий Иванович
  • Константинов Рюрий Иванович
RU2602465C1
Лопаточный насос 2019
  • Иванов Андрей Владимирович
  • Дмитренко Анатолий Иванович
  • Скоморохов Геннадий Иванович
  • Шматов Дмитрий Павлович
RU2731552C1
УПЛОТНЕНИЕ ВАЛА ТУРБОНАСОСНОГО АГРЕГАТА (ВАРИАНТЫ) 2014
  • Азовский Александр Александрович
  • Заложных Иван Сергеевич
  • Иванов Андрей Владимирович
  • Кравченко Анатолий Георгиевич
RU2572468C2
РОТОР ТУРБОНАСОСНОГО АГРЕГАТА 1995
  • Дмитренко А.И.
RU2099607C1
БУСТЕРНЫЙ ТУРБОНАСОСНЫЙ АГРЕГАТ 1996
  • Ромасенко Е.Н.
RU2106534C1

Иллюстрации к изобретению RU 2 717 482 C1

Реферат патента 2020 года Щелевое уплотнение-демпфер центробежного насоса

Изобретение относится к области насосостроения и может быть использовано, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Щелевое уплотнение-демпфер для гашения энергии колебаний вращающегося в бесконтактных подшипниках ротора центробежного насоса содержит корпус с уплотнительной поверхностью, плавающее кольцо, выполненное из отдельных секторов (6), уплотнительный выступ (5) центробежного колеса насоса и упругое демпферное кольцо (7). При этом кольцо (7) установлено коаксиально между уплотнительной поверхностью корпуса и наружной поверхностью плавающего кольца. Изобретение направлено на исключение механического касания элементов насоса о статорные элементы щелевого уплотнения и обеспечение безаварийной работы при прохождении первой критической (резонансной) скорости вращения ротора за счет гашения энергии колебаний центробежного колеса упругим демпферным кольцом. 4 ил.

Формула изобретения RU 2 717 482 C1

Щелевое уплотнение-демпфер для гашения энергии колебаний вращающегося в бесконтактных подшипниках ротора центробежного насоса, содержащее корпус с уплотнительной кольцевой поверхностью, плавающее кольцо, центробежное колесо насоса с уплотнительным выступом, причем плавающее кольцо щелевого уплотнения выполнено из отдельных секторов, а между уплотнительной поверхностью корпуса и плавающим кольцом коаксиально установлено упругое демпферное кольцо.

Документы, цитированные в отчете о поиске Патент 2020 года RU2717482C1

ЦЕНТРОБЕЖНЫЙ НАСОС 2012
  • Агринский Андрей Николаевич
  • Воронов Тимур Дмитриевич
  • Герасимов Владимир Сергеевич
  • Казанцев Родион Петрович
  • Щуцкий Сергей Юрьевич
RU2513534C2
Уплотнение 1988
  • Варфоломеев Александр Николаевич
SU1566088A1
0
SU190155A1
US 6082964 A1, 04.07.2000
CN 101375020 A, 25.02.2009
US 20080008579 A1, 10.01.2008.

RU 2 717 482 C1

Авторы

Позняк Михаил Иванович

Каширин Анатолий Иванович

Веселова Наталья Николаевна

Даты

2020-03-23Публикация

2019-05-17Подача