Изобретение относится к радиационной технике, а именно к радиологическим системам визуализации, и используется для получения информации о функции рассеяния точки ФРТ (Point Spread Function - PSF).
Согласно теории обработки сигналов, зарегистрированное линейной системой изображение ƒ является пространственной сверткой истинного сигнала g с функцией рассеяния точки PSF [1, 2]:
ƒ=g * PSF
По определению ФРТ есть отклик системы на входной дельта-импульс. Для рентгенографической системы дельта-импульсом является излучение, прошедшее через точечный объект, расположенный в засвечиваемой плоскости.
Размер проекции точечного объекта равен произведению коэффициента увеличения на размер фокусного пятна. Это соотношение определяет ширину ФРТ. Чем меньше размытие, тем выше пространственные и контрастные характеристики изображения. Зависимость контраста изображения от пространственной частоты исследуемого объекта определяется функцией передачи модуляции (Modulation Transfer Function - MTF), являющейся модулем преобразования Фурье от ФРТ.
Функция передачи модуляции, определяемая размером фокусного пятна, выражается формулой [3]:
где q - пространственная частота, п.л./мм; F - размер проекции действительного фокусного пятна, мм.
Современные медицинские системы рентгеновской визуализации активно используют в качестве источника излучения рентгеновские трубки с вращающимся анодом. Применение такого рода трубок обеспечивает возможность получения достаточного количества проекционных изображений для реконструкции и получения томограмм.
Общая функция рассеяния ФРТ складывается из размытия на каждом из этапов преобразования сигнала. Негативный вклад определяется размером фокусного пятна трубки, рассеянием излучения, движением объекта исследования в процессе экспозиции, конечным размером пикселя детектора, преобразованиями в чувствительном слое детектора. Для объектов, размер проекции которых больше размера пикселя, подавляющее влияние на размытие оказывает конечный размер фокусного пятна рентгеновской трубки.
Для рентгеновских трубок с коническим анодом действительным фокусным пятном является область анода, непосредственно в которой происходит торможение потока электронов. Эффективным фокусным пятном называется проекция действительного фокусного пятна в направлении соответствующей оси излучения. В широком коническом пучке излучения форма и размеры проекции действительного фокусного пятна в конкретной точке поля определяются пространственным смещением данной точки относительно проекции центрального луча. Наибольшие отклонения от номинальных параметров характерны для крайних точек поля излучения
На Фиг. 1 схематически демонстрируется влияние направления на изменение проекции действительного фокусного пятна, где α - угол наклона анода; Fд, Fэ - действительный и эффективный размер фокусного пятна соответственно; F - проекция действительного фокусного пятна в произвольную точку, расположенную на расстоянии L от центральной оси; Н - расстояние от фокусного пятна до плоскости детектора.
Стоит отметить, что размер проекции уменьшается для области, находящейся под анодом трубки, а для области, находящейся под катодом - размер проекции будет увеличиваться.
Зависимость проекции действительного фокусного пятна в произвольную точку от эффективного размера выражается следующей формулой:
В случае с медицинскими системами рентгеновской визуализации геометрические параметры могут быть следующими: L=200 мм; Н=1500 мм; α=12 градусов. Для данных параметров отношение между размером проекции действительного фокусного пятна и эффективным размером может достигать 1,63 для катодной области и 0,37 - для анодной. Таким образом, наблюдается существенное различие в проекции действительного фокусного пятна по всей плоскости детектора, что приводит к тому, что функция рассеяния точки, зависящая от размера фокусного пятна, изменяется в плоскости детектора.
Современные методики определения функции рассеяния точки основываются на определении отклика детектора при просвечивании объекта, непрозрачного для излучения, при этом в объекте находится отверстие, размер меньше, чем размер пикселя детектора - т.е. происходит имитация дельта-пучка излучения - pinhole метод [4, 5]. Сложность работы с такого типа методикой заключается в том, что при просвечивании высокоэнергетическим рентгеновским излучением и при использовании детектора с высоким разрешением необходимо изготавливать толстостенные изделия толщиной порядка 50-100 мм и диаметром отверстия на уровне 0,2 мм при этом ось пучка излучения должна совпадать с осью отверстия. Данная задача является технологически сложной.
Существуют методы, основанные на использование краевого или щелевого тест-объектов [6]. В данной методике на одной проекции можно получить информацию о сечении ФРТ в одном из направлений. Применение краевого или щелевого тест-объектов целесообразно при условии, что ФРТ симметрична. Однако, в системах использующих рентгеновские трубки с вращающимся анодом, ФРТ не является симметричной, и использование краевого или щелевого тест-объектов приведет к тому, что необходимо будет делать несколько проекций для каждой точки.
За прототип взята система [4], в которой используется вольфрамовый куб с отверстием, при этом диаметр отверстия составляет 0,47 мм а его толщина - 65 мм. Недостатком данного прототипа является то, что измерение ФРТ производится только в одной точке и никак не учитывается изменением проекции фокусного пятна при отклонении от оси пучка излучения.
Целью данного изобретения является повышение точности определения функции рассеяния точки в системах рентгеновской визуализации.
Указанный технический результат достигается за счет определения размеров проекции действительного фокусного пятна для каждого пиксель детектора.
Для реализации данного способа необходимо иметь информацию о базовой функции рассеяния точки, измеренной в точке, соответствующей эффективному фокусному пятну. Информация о базовой ФРТ может быть получена как с использованием диафрагмы с отверстием круглой формы, так и с использованием краевого или щелевого тест-объектов. Согласно геометрии измерения базовой ФРТ рассчитывается ее проекция на поверхность конического анода с учетом интенсивности сигнала, то есть определяются геометрические контуры и профиль интенсивности действительного фокусного пятна. После получения данных о действительном фокусном пятне выполняется расчет проекции в интересующую точку или пиксель детектора при заданных геометрических параметрах. Далее реализуется пространственная дискретизация в соответствие с размерами пикселя детектора. После проведения пространственной дискретизации выполняется процедура учета функции рассеяния в детекторе.
Список литературы
[1] Gonzalez R.C., Woods R.E., Image processing // Digital image processing. - 2007. - T. 2. - C. 1.
[2] Russo P., Handbook of X-ray imaging: physics and technology. - CRC Press, 2017. C. 713-748
[3] Buzug T.M., Computed tomography // Springer Handbook of Medical Technology. - Springer, Berlin, Heidelberg, 2011. - C. 311-342.
[4] WANG Yi, LI Qin, CHEN Nan, Spot size measurement of flash-radiography source utilizing the pinhole imaging method // Chinese Physics C 40(7), 2015.
[5] YongBin Leng, GuoQing Huang, ManZhou Zhang, Beam based calibration of X-ray pinhole camera in SSRF // Chinese Physics C 36(l): 80-83 2012.
[6] K.T. Joyce, J.M. Bardsley, A. Luttman, Point Spread Function Estimation in X-Ray Imaging with Partially Collapsed Gibbs Sampling // SIAM Journal on Scientific Computing 40(3) 2018.
название | год | авторы | номер документа |
---|---|---|---|
ОПТИЧЕСКАЯ СИСТЕМА ДЛЯ ЗАХВАТА ИЗОБРАЖЕНИЙ С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ ВОССТАНОВЛЕНИЯ РЕЗКОСТИ | 2023 |
|
RU2817181C1 |
ИМИТИРОВАННЫЙ ПРОСТРАНСТВЕННЫЙ ПРОСМОТР ОБЪЕКТА В РЕАЛЬНОМ ВРЕМЕНИ С РАЗЛИЧНЫХ ТОЧЕК НАБЛЮДЕНИЯ | 2013 |
|
RU2656245C2 |
УСТРОЙСТВО ДЛЯ ВИЗУАЛИЗАЦИИ МОЛОЧНОЙ ЖЕЛЕЗЫ ПАЦИЕНТА РЕНТГЕНОВСКИМ ИЗЛУЧЕНИЕМ В РЕЖИМЕ ТОМОСИНТЕЗА ИЛИ МАММОГРАФИИ | 2014 |
|
RU2553505C1 |
СПОСОБ ПОСАДКИ БВС САМОЛЕТНОГО ТИПА НА ВЗЛЕТНО-ПОСАДОЧНУЮ ПОЛОСУ С ИСПОЛЬЗОВАНИЕМ ОПТИЧЕСКИХ ПРИБОРОВ РАЗЛИЧНОГО ДИАПАЗОНА | 2019 |
|
RU2724908C1 |
ДЕТЕКТОР И СИСТЕМА ВИЗУАЛИЗАЦИИ ДЛЯ РЕНТГЕНОВСКОЙ ФАЗОВО-КОНТРАСТНОЙ ВИЗУАЛИЗАЦИИ ТОМОСИНТЕЗА | 2015 |
|
RU2708816C2 |
ПОДДИСПЛЕЙНАЯ КАМЕРА ДЛЯ МОБИЛЬНЫХ УСТРОЙСТВ | 2023 |
|
RU2811012C1 |
Способ определения пространственного профиля инспектируемого объекта | 2022 |
|
RU2790794C1 |
СКАНИРУЮЩЕЕ РЕНТГЕНОВСКОЕ УСТРОЙСТВО С ПОЛНОФОРМАТНЫМ ДЕТЕКТОРОМ | 2016 |
|
RU2720292C2 |
УСТРОЙСТВО ДЛЯ МАЛОУГЛОВОЙ ТОПОГРАФИИ (ВАРИАНТЫ) | 1997 |
|
RU2119659C1 |
УСТРОЙСТВО ФОРМИРОВАНИЯ СКАНИРУЮЩЕГО РЕНТГЕНОВСКОГО ПУЧКА ПИРАМИДАЛЬНОЙ ФОРМЫ (ВАРИАНТЫ) | 2009 |
|
RU2393653C1 |
Изобретение относится к радиационной технике, а именно к радиологическим системам визуализации, и используется для получения информации о функции рассеяния точки ФРТ (Point Spread Function - PSF). Сущность изобретения заключается в том, что способ определения функции рассеяния точки системы рентгеновской визуализации дополнительно содержит этапы, на которых из базовой функции рассеяния точки, определяемой с использованием диафрагмы с отверстием круглой формы, краевого или щелевого тест-объектов, рассчитываются геометрические контуры и профиль интенсивности по действительному фокусному пятну с дальнейшим расчетом проекции действительного фокусного пятна в интересующую точку или пиксель детектора при заданных геометрических параметрах и пространственной дискретизацией с учетом размера пикселя и собственной функцией рассеяния точки в детекторе. Технический результат - повышение точности определения функции рассеяния точки в системах рентгеновской визуализации. 1 ил.
Способ определения функции рассеяния точки системы рентгеновской визуализации, включающий базовую функцию рассеяния точки, измеренную в точке, соответствующей эффективному фокусному пятну, информацию о параметрах рентгеновской трубки с вращающимся анодом, информацию о геометрических параметрах системы, плоскопанельный детектор рентгеновского излучения, информацию о функции рассеяния точки в детекторе рентгеновского излучения, отличающийся тем, что из базовой функции рассеяния точки, определяемой с использованием диафрагмы с отверстием круглой формы, краевого или щелевого тест-объектов, рассчитываются геометрические контуры и профиль интенсивности по действительному фокусному пятну с дальнейшим расчетом проекции действительного фокусного пятна в интересующую точку или пиксель детектора при заданных геометрических параметрах и пространственной дискретизацией с учетом размера пикселя и собственной функцией рассеяния точки в детекторе.
WANG Yi, LI Qin, CHEN Nan, Spot size measurement of flash-radiography source utilizing the pinhole imaging method | |||
Приспособление с иглой для прочистки кухонь типа "Примус" | 1923 |
|
SU40A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИИ РАССЕЯНИЯ ОПТИЧЕСКОЙ СИСТЕМЫ | 0 |
|
SU289329A1 |
РЕКОНСТРУКЦИЯ В ПОЗИТРОННОЙ ЭМИССИОННОЙ ТОМОГРАФИИ В РЕЖИМЕ ВРЕМЯПРОЛЕТНОГО СПИСКА С ИСПОЛЬЗОВАНИЕМ ФУНКЦИИ ОТКЛИКА ДЕТЕКТОРА | 2006 |
|
RU2401441C2 |
US 2016109387 A1, 21.04.2016. |
Авторы
Даты
2020-03-24—Публикация
2019-07-10—Подача