Изобретение относится к ракетной технике, а именно к жидкостному ракетному двигателю (ЖРД), работающему по схеме с дожиганием генераторного газа.
При разработке ЖРД предъявляются предельно высокие требования по габаритно-массовым характеристикам. Реализация этих требований осуществляется за счет плотной упаковки агрегатов двигателя, оптимального раскрепления агрегатов между собой.
В большинстве случаев закрепление большого по массе турбонасосного агрегата (ТНА) осуществляется с помощью кронштейнов закрепленных на камере в районе критического сечения или на цилиндрической части.
Известна конструкция ЖРД изложенная в патенте RU 2490508 С1, в которой раскрепление ТНА осуществляется к двигательной раме и на растяжке к сопловой части камеры.
Недостатком данной конструкции является расположение TIIA на значительном удалении от камеры сгорания из-за раскрепления его на растяжке к головной части камеры и крепления к двигательной раме.
В конструкции ЖРД, изложенной в патенте RU 2612232 С1 (аналог) закрепление ТНА к камере осуществляется с помощью растяжек установленных на цилиндрической части камеры и газоводного подвода.
Недостатком данной конструкции является невозможность плотной компоновки двигателя.
В конструкции ЖРД, изложенной в патенте RU 2476709 и принятой за прототип, раскрепление ТНА к камере осуществляется с помощью растяжек, закрепленных на сопловой и цилиндрической частях камеры.
Недостатком данной конструкции является невозможность выполнения плотной компоновки двигателя, невозможности, в случае необходимости, расположения ТНА выше критического сечения камеры сгорания.
Кроме того, при необходимости, невозможно закрепить кронштейн турбонасного агрегата за газовод камеры, так как он имеет высокую температуру (порядка 700-950К), что приведет к появлению различных дефектов. Так же нахождение сосредоточенного усилия от кронштейна ТНА на горячей поверхности газовода камеры может привести к его разрушению.
Данное изобретение устраняет указанные недостатки прототипа за счет, установки опоры крепления на газоводе ЖРД, что позволяет уменьшить габаритные размеры ЖРД; охлаждения опоры крепления установленной на газоводе ЖРД, что позволяет уменьшить напряжения в крепежных элементах, возникающих из-за разницы температур; выполнения в охлаждаемой опоре крепления установленной на газоводе ЖРД каналов охлаждения, что позволяет интенсифицировать теплообмен.
Поставленная задача решается тем, что жидкостный ракетный двигатель содержит опору крепления, которая согласно изобретению
- установлена на газоводе;
- выполнена охлаждаемой;
- имеет каналы охлаждения;
- состоит не менее чем двух частей;
- содержит магистрали перепуска охлаждения между своими частями;
- части опоры соединены фланцевым соединением.
Такое исполнение конструкции позволяет, в случае крайней необходимости, обеспечит плотную упаковку агрегатов (компоновку) двигателя с обеспечением надежного закрепления ТНА за газовод камеры, снизить трудоемкость изготовления и увеличить долговечность работы двигателя.
Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1, 2, 3, 4, 5.
На фиг. 1 показано расположение опоры ТНА 3, выполненной методом послойного порошкового лазерного спекания гранул, па газоводе камеры 2, соединенной фланцевым соединением 4 и магистралями перепуска 5 с патрубком подвода горючего в опору 6, где
1 - камера.
На фиг. 2 представлен разрез крепления опоры ТНА 3 с кольцевыми каналами охлаждения 8 на газоводе камеры 2, где:
4 - фланцевые соединения опоры;
5 - магистраль перепуска;
6 - патрубок подвода горючего в кольцевые каналы охлаждения опоры;
7 - патрубок выхода горючего из каналов охлаждения опоры;
8 - кольцевые каналы охлаждения в опоре;
9 - полость во фланце;
10 - кронштейн крепления ТНА.
На фиг. 3 показ вид кольцевых каналов охлаждения 8, расположенных в опоре 3 на газоводе камеры 2.
На фиг. 4 показан фрагмент соединения кольцевых каналов 8 с полостью 9, расположенной во фланце 4, где:
2 - газовод камеры;
3 - опораТНА;
4 - фланцевое соединение опоры;
5 - магистраль перепуска;
8 - кольцевые каналы охлаждения в опоре;
9 - полость во фланце.
На фиг. 5 показан фрагмент подвода горючего из патрубка подвода (отвода) в кольцевые клапаны охлаждения, где:
2 - газовод камеры;
3 - опора ТНА;
7 - патрубок подвода горючего в кольцевые каналы охлаждения;
8 - кольцевые каналы охлаждения в опоре.
Жидкостный ракетный двигатель работает следующим образом.
В соответствии с циклограммой происходит запуск ЖРД. При этом генераторный газ с температурой ~ 700÷950К после турбины ТНА поступает в газовод 2 камеры 1. Одновременно часть расхода горючего после второй ступени насоса отбирается на охлаждение опоры крепления ТНА 3. Эта часть горючего через входной патрубок 6 поступает в кольцевые каналы охлаждения 8, после прохождения первой части опоры 3, горючее собирается в полости 9 фланцевого соединения 4, и по перепускным магистралям 5 поступает в кольцевые каналы охлаждения 8второй части опоры 3, охладив ее вторую часть, горючее из кольцевых каналов охлаждения 8 собирается в выходном патрубке 7 и направляется на вход в первую ступень ТНА.
Таким образом, установка опоры крепления на газоводе ЖРД позволяет уменьшить габаритные размеры ЖРД, охлаждение опоры крепления установленной на газоводе ЖРД позволяет уменьшить напряжения в крепежных элементах возникающих из-за разницы температур, выполнение в охлаждаемой опоре крепления установленной на газоводе ЖРД каналов охлаждения позволяет интенсифицировать теплообмен.
название | год | авторы | номер документа |
---|---|---|---|
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С УПРАВЛЯЕМЫМ ВЕКТОРОМ ТЯГИ И УЗЕЛ ПОДВЕСКИ КАМЕРЫ СГОРАНИЯ ЖРД | 2009 |
|
RU2409754C1 |
ГАЗОВОД ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ДОЖИГАНИЕМ | 2005 |
|
RU2339831C2 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С УПРАВЛЯЕМЫМ ВЕКТОРОМ ТЯГИ И БЛОК СОПЕЛ КРЕНА | 2010 |
|
RU2431756C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ РАБОТЫ | 2015 |
|
RU2609549C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ, СПОСОБ ЕЕ РАБОТЫ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2602656C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С УПРАВЛЯЕМЫМ ВЕКТОРОМ ТЯГИ И БЛОК СОПЕЛ КРЕНА | 2010 |
|
RU2420669C1 |
ГАЗОВЫЙ ТРАКТ ЖРД | 2015 |
|
RU2579296C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ, СПОСОБ ЕЕ РАБОТЫ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2609664C1 |
ТРЕХКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2011 |
|
RU2481488C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ НА КРИОГЕННОМ ТОПЛИВЕ | 1996 |
|
RU2118684C1 |
Изобретение относится к ракетной технике, а именно к жидкостному ракетному двигателю (ЖРД), работающему по схеме с дожиганием генераторного газа. Жидкостный ракетный двигатель содержит газовод и опору крепления, при этом опора крепления установлена на газоводе, выполнена охлаждаемой и содержит каналы охлаждения. Опора крепления состоит не менее чем из двух частей, содержит магистрали перепуска охладителя между своими частями, а части опоры соединены фланцевым соединением. Изобретение обеспечивает выполнение плотной компоновки двигателя, а также расположение ТНА выше критического сечения камеры сгорания. 3 з.п. ф-лы, 5 ил.
1. Жидкостный ракетный двигатель, содержащий газовод и опору крепления, отличающийся тем, что опора крепления установлена на газоводе, выполнена охлаждаемой и содержит каналы охлаждения.
2. Жидкостный ракетный двигатель по п. 1, отличающийся тем, что опора крепления состоит не менее чем из двух частей.
3. Жидкостный ракетный двигатель по п. 2, отличающийся тем, что опора крепления содержит магистрали перепуска охладителя между своими частями.
4. Жидкостный ракетный двигатель по п. 2, отличающийся тем, что части опоры соединены фланцевым соединением.
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2011 |
|
RU2476709C1 |
Многокамерный жидкостный ракетный двигатель с дожиганием генераторного газа | 2017 |
|
RU2674828C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2158838C2 |
US 2952971 A, 20.09.1960 | |||
US 6282887 B1, 04.09.1999. |
Авторы
Даты
2020-03-30—Публикация
2019-04-25—Подача