THEMATIC MODELS WITH A PRIORI TONALITY PARAMETERS BASED ON DISTRIBUTED REPRESENTATIONS Russian patent published in 2020 - IPC G06F40/279 G06F16/36 

Abstract RU 2719463 C1

FIELD: data processing.

SUBSTANCE: invention relates to means for thematic modelling with a priori tone parameters based on distributed representations. Text document is inserted into a thematic model and a presentation for each word in the text document is determined by the thematic model, wherein the representations are word vectors in the semantic space. Assessing presentations using a priori tone parameters to determine a theme corresponding to said text document, wherein the topic model comprises a priori tonality parameters, trained based on representations distributed using a regularizer, which sets the same tonality to words having similar word vectors, and wherein each a priori tonality parameter is the same for words having similar word vectors.

EFFECT: technical result consists in detecting a greater number of aspect-oriented tonal words and further improved classification.

8 cl, 5 dwg, 9 tbl

Similar patents RU2719463C1

Title Year Author Number
METHOD OF DETERMINING PROFILE OF MOBILE DEVICE USER ON MOBILE DEVICE ITSELF AND DEMOGRAPHIC PROFILING SYSTEM 2016
  • Yoo Jaebong
  • Kryzhanovskiy Konstantin Alexandrovich
  • Podoynitsina Lyubov Vladimirovna
  • Romanenko Alexander Alexandrovich
  • Polubotko Dmitry Valerievich
  • Kazantsev Alexey Yurievich
  • Moiseenko Andrey Konstantinovich
  • Maslennikov Mstislav Vladimirovich
RU2647661C1
METHOD OF ANALYSING TEXT DATA TONALITY 2014
  • Yang David Yevgenievich
  • Tyurin Anton Yevgenievich
  • Mikhaylov Maksim Borisovich
  • Danielyan Tatiana Vladimirovna
  • Lokotilova Olga Vladimirovna
RU2571373C2
SYSTEM AND METHOD FOR AUTOMATED ASSESSMENT OF INTENTIONS AND EMOTIONS OF USERS OF DIALOGUE SYSTEM 2020
  • Fenogenova Alena Sergeevna
  • Shavrina Tatyana Olegovna
RU2762702C2
BAYESIAN RAREFACTION OF RECURRENT NEURAL NETWORKS 2018
  • Lobacheva Ekaterina Maksimovna
  • Chirkova Nadezhda Aleksandrovna
  • Vetrov Dmitrij Petrovich
RU2702978C1
METHOD AND SYSTEM OF SEMANTIC PROCESSING TEXT DOCUMENTS 2016
  • Mitelkov Dmitrij Vladimirovich
  • Novikov Andrej Yurevich
  • Satin Boris Borisovich
RU2630427C2
TRAINING CLASSIFIERS USED TO EXTRACT INFORMATION FROM NATURAL LANGUAGE TEXTS 2018
  • Matskevich Stepan Evgenevich
  • Bulgakov Ilya Aleksandrovich
RU2691855C1
METHOD FOR SEMANTIC HASHING OF TEXT DATA 2023
  • Zhumaev Zajnulla Serikovich
  • Petriev Sergej Konstantinovich
  • Yamchenko Yurij Vladimirovich
  • Ryabov Sergej Sergeevich
RU2822863C1
CLASSIFIER TRAINING USED FOR EXTRACTING INFORMATION FROM TEXTS IN NATURAL LANGUAGE 2018
  • Matskevich Stepan Evgenevich
  • Bulgakov Ilya Aleksandrovich
RU2681356C1
RETRIEVAL OF INFORMATION OBJECTS USING A COMBINATION OF CLASSIFIERS ANALYZING LOCAL AND NON-LOCAL SIGNS 2018
  • Indenbom Evgenij Mikhajlovich
RU2686000C1
SELECTION OF TEXT CLASSIFIER PARAMETER BASED ON SEMANTIC CHARACTERISTICS 2016
  • Kolotienko Sergej Sergeevich
  • Anisimovich Konstantin Vladimirovich
RU2628431C1

RU 2 719 463 C1

Authors

Tutubalina Elena Viktorovna

Nikolenko Sergey Igorevich

Dates

2020-04-17Published

2018-12-07Filed