Изобретение относится к нефтегазодобывающей промышленности, в частности к способам определения трещиноватости горной породы с привязкой к направлению.
Прибор для контроля технического состояния обсаженных скважин (патент на ПМ RU № 39958, МПК G01V 5/12, E21B 47/00, опубл. 20.08.2004 Бюл. № 23), содержащий кожух, заглушки, центраторы и размещенные внутри кожуха прибора измерительные зонды плотномера и толщиномера, причем в нижней заглушке установлены шток с источником гамма излучения, наконечник и свинцовый экран с коллимационными окнами для источника и приемного преобразователя зонда толщиномера, а на верхней заглушке – электронный блок, взаимоэкранированные свинцовым экраном, равномерно расположенные и равноудаленные от оси прибора приемные преобразователи зонда плотномера и, расположенный по оси прибора, приемный преобразователь зонда толщиномера, причем приемные преобразователи зонда плотномера развернуты на 180°, центраторы установлены по концам кожуха прибора и выполнены в виде втулки с равномерно расположенными по окружности продольными пазами, в которые установлены опоры, зафиксированные с двух сторон, а прибор снабжен узлом соединения со средством его доставки.
Этим прибором осуществляют способ контроля технического состояния обсаженных скважин, включающий последовательное протягивания прибора от одного исследуемого интервала к другому с записью каротажных диаграмм, при этом источник гамма излучения генерирует гамма кванты, а приемные преобразователи зонда толщиномера и зондов плотномера принимают и преобразуют рассеиваемое от исследуемого пространства гамма излучение, информацию с которых через электронный блок и кабель передают в наземный регистратор.
Недостатками данного способа являются отсутствие привязки к направлению измерений, узкая область применения из-за исследования только состояния труб трубопроводом или обсадной колонны.
Известна также забойная телеметрическая система (патент RU № 2509210, МПК E21B 47/12, E21B 47/20, E21B 47/02, G01V 5/1, опубл. 10.03.2014 Бюл. № 7), содержащая соединенные между собой модуль электрогенератора-пульсатора, модуль инклинометра, модуль гамма-каротажа, включающие телеметрические блоки, причем она дополнительно содержит блок анализа и управления коммутатором и коммутатор, соединенные с указанными модулями, при этом вход блока анализа и управления коммутатором соединен с выходом блока управления пульсациями модуля гамма-каротажа, установленным в модуле гамма-каротажа, и первым входом коммутатора, а выход блока анализа и управления коммутатором соединен с входом управления коммутатора, второй вход коммутатора соединен с выходом блока управления пульсациями модуля инклинометра, установленным в модуле инклинометра, а выход коммутатора соединен с входом пульсатора, установленным в модуле электрогенератора-пульсатора, причем модуль инклинометра выполнен с возможностью раздельной или совместной работы с модулем гамма-каротажа.
Этой системой осуществляют контроль при работе бурильного инструмента, включающий модуль инклинометра, модуль гамма-каротажа и модуль электрогенератора-пульсатора, которые спускают в скважину, предварительно соединяя попарно через кабельные соединения и монтируя в защитный кожух, способный выдерживать высокое давление бурового раствора, создаваемое при бурении насосами, в процессе работы прокачкой потока бурового раствора через направляющий аппарат и ротор гидротурбины электрогенератора для выработки электрическое напряжение, поступающее на модули инклинометра и гамма-каротажа для контроля за состоянием стенок скважины, при совместной работе модуль гамма-каротажа является ведущим по отношению к модулю инклинометра, при этом электронный блок модуля гамма-каротажа периодически опрашивает по интерфейсной линии связи электронный блок модуля инклинометра и получает от него инклинометрическую информацию.
Недостатками данного способа являются узкая область применения из-за возможности работы в составе с бурильным инструментом при прокачке бурового раствора и исследования только состояния стенок скважины в процессе бурения.
Наиболее близким по технической сущности является устройство для исследования цементного кольца за обсадной колонной в скважине (патент RU № 2254598, МПК G01V 5/12, опубл. 20.06.2005 Бюл. № 17), содержащее корпус и неподвижный относительно корпуса экран с коллимационными окнами для источника и детекторов гамма-излучения; детекторы гамма-излучения, расположенные равномерно по периметру корпуса устройства на двух уровнях дальности относительно источника, соответствующих двум измерительным зондам - малому и большому и взаимоэкранированных, электронную схему, датчик углового положения, отличающееся тем, что парные детекторы гамма-излучения малого и большого зондов расположены по обе стороны от источника гамма-излучения, причем парные детекторы гамма-излучения малого и большого зондов, расположенные с одной стороны источника гамма-излучения, смещены в поперечном сечении относительно парных детекторов гамма-излучения малого и большого зондов, расположенных с другой стороны источника гамма-излучения, на угол, равный 360/N, где N - общее число парных детекторов малого и большого зондов; датчик углового положения жестко ориентирован в плоскости, проходящей через ось устройства и продольную ось одного из парных детекторов гамма-излучения малого и большого зондов, электронная схема снабжена телесистемой.
Данным устройством осуществляется способ исследования цементного кольца за обсадной колонной, включающий спуск в скважину на глубину исследуемого интервала и при последующем подъем выше исследуемого интервала, запись каротажных диаграмм наземным регистратором, при этом детекторы гамма-излучения, расположенные равномерно по окружности устройства, регистрируют интенсивность рассеянного гамма-излучения и выдают N-ное число селективных диаграмм, соответствующих количеству установленных детекторов, по N числу каналов телесистемы одновременно, а датчик углового положения регистрирует изменение угла между ориентированной плоскостью, проходящей через ось устройства и ось одной пары детекторов, условно принятых за отсчетные - нулевые, например детекторов А, и апсидальной плоскостью скважины, сигналы с детекторов гамма-излучения и датчика углового положения формируются в блоке формирователей импульсов, преобразуются в блоках регистров, упаковываются в контроллере телесистемы и через согласующее устройство и выходной блок передаются на наземный регистратор, при этом на наземном регистраторе записывают диаграммы от всех детекторов гамма-излучения и углограмма от датчика углового положения.
Недостатками данного способа являются привязка показаний датчиков углового положения только к относительной системе координат, достаточной для определения целостности цементного кольца и его плотности.
Недостатками всех способов является то, что они не предназначены для определения ориентации естественной трещиноватости горной породы в обсаженных скважинах, так как гамма-каротаж при этом проводится без привязки по сторонам света и без учета толщины стенок труб обсадной колонны, что не позволяет определить глубину проникновения цементного раствора в соответствующую горную породу.
Технической задачей предполагаемого изобретения является создание способа, позволяющего определить преобладающую ориентацию естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра.
Техническая задача решается способом определения ориентации естественной трещиноватости горной породы, включающим спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости.
Новым является то, что ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемым инклинометром, спускаемым в составе измерительного оборудования, одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале, а ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение.
Новым является также, что чувствительность детекторов гамма-излучения регулируется в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения.
На фиг. 1 изображена схема реализации способа.
На фиг. 2 изображены разрезы обсадной колонны с цементным камнем по сторонам света: север-юг (N-S) и запад-восток (W-O).
На фиг. 3 изображены развертки соответствующих разрезов, где за ноль принято направление на север (N) – каротажные диаграммы.
Способ определения ориентации естественной трещиноватости горной породы включает спуск в зацементированную обсадную колонну 1 скважины 2 измерительного оборудования 3 на глубину ниже исследуемого интервала (не показан), подъем оборудования 3 с записью каротажных диаграмм (фиг. 3) плотности цементного камня 4 (фиг. 1 – 3) с привязкой к изменению угла регистратором при помощи соответственно излучателей 5 (фиг. 1) и детекторов 6 гамма-излучения и датчика углового положения 7 относительно выбранной ориентировочной плоскости. Ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг (N-S, фиг. 2), определяемым инклинометром 8 (фиг. 1), спускаемым в составе измерительного оборудования. Одновременно определяют при помощи дополнительных датчиков 9 гамма-излучения толщину стенок h1 (фиг. 3) и h2 труб обсадной колонны 1 в исследуемом интервале. Ориентацию естественной трещиноватости определяют по направлению максимальной глубины Н в противоположных направлениях 10 и 11 от скважины 2 проникновения цементного камня 4 в пласт 12 (фиг. 1), превосходящее вероятностное отклонение. В случаях, когда при строительстве скважины 2 применялись трубы обсадной колонны 1 различной толщины h1 (фиг. 3) и h2, на участке с более толстыми трубами h2 детекторы 6 (фиг. 1) гамма-излучения для определения плотности цементного камня 4 настраивают электронным блоком 13 более чувствительным для нивелирования затухания гамма-излучения, так как увеличение толщины стенок h2 (фиг. 3) снижает глубину проникновения H и усиливают затухание гамма-излучений. Для регулирования чувствительности детекторов 6 (фиг. 1) электронные блоки 13 настраиваются в лабораторных условиях, чтобы выдавать сопоставимые с остальными измерениями результаты для построения каротажных диаграмм (фиг. 3) соответствующих действительности.
Конструктивные элементы и технологические соединения
Пример конкретного выполнения.
После бурения скважины 2 (фиг. 1) в нее спустили и зацементировали обсадную колонну 1 (с наружным диаметром 146 мм) с образованием в ее затрубье цементного камня 4. Во время цементирования цементный раствор проникает внутрь горной породы, вскрытой скважиной 2, пропорционально ее проницаемости: где проницаемость выше, особенно в направлении преобладающей трещиноватости, цементный раствор проникает на большую глубину Н (фиг. 3) от скважины 2 (Фиг. 1). Для исследования скважины 2 в обсадную колонну 1 спустили на геофизическом кабеле 14 (для подачи электрического питания и передачи информации на устье) измерительное оборудование 3 ниже исследуемого интервала. При помощи кабеля 14 поднимали оборудование 3, при этом излучатели 5 генерируют гамма-излучения (γ-излучения), датчики 9 и детекторы 6 принимают их, преобразовывают в электрические сигналы, которые принимаются, обрабатываются с привязкой к угловому положению, определяемому датчиком 7 и передаются на поверхность, где блоком обработки (не показан) перерабатываются и строятся каротажные диаграммы (фиг. 3). Датчик 7 (фиг. 1) определяет угловое положение измеряемой информации относительно ориентировочной плоскости – вертикальную плоскость, идущую через магнитный меридиан N-S (фиг. 2), который определяется инклинометром 8 (фиг. 1). Датчики 9 (приемники γ-излучения, настроенные более грубо чем детекторы 6), идущие перед детекторами 6 при подъеме вверх, определяют h1 (фиг. 3) и h2 труб обсадной колонны 1 в исследуемом интервале для настройки чувствительности детекторов 6 (фиг. 1). В ходе исследований оборудованием 3 определили четыре основные зоны в исследуемом интервале: первая 15 сверху – с содержанием глины, вторая, продуктовый пласт 12 – песчаник, третья 16 – глина, четвертая 17 – известняк. Толщина трубы обсадной колонны 1 по всей длине составила h1=7,0 мм (фиг. 3), а в третьей зоне 16 (фиг. 1) – h2=7,7 мм (фиг. 3). Разрезы А-А, Б-Б,
В-В и Г-Г соответствующей каждой зоны 15, 12, 16 и 17 показаны на фиг. 2 с ориентацией севером наверх. В третьей зоне 16 чувствительность детекторов 6 из-за большей толщины h2 (фиг. 3) труб обсадной колонны 1 была повышена электронным блоком 13 (фиг. 1) для нивелирования затухания γ-излучения в соответствии с толщиной h2 (фиг. 3). В других зонах 15 (фиг. 1), 12 и 17 чувствительность детекторов 6 поддерживалась блоком 13 на начальном уровне. Полученные сигналы с датчиков 9 и детекторов 6 обрабатывались подавались кабелем 14 на поверхность, где блоком обработки строятся каротажные диаграммы (фиг. 3) состояния цементного камня 4. Для улучшения точности измерений оборудование 3 (фиг. 1) рекомендуется оснащать с двух сторон центраторами 18. Из диаграмм (фиг. 3) в зоне продуктивного пласта 12 (фиг. 1) разрез Б-Б (фиг. 2) выявили явные максимумы 10 (фиг. 3) (по направлению на восток – O) и 11 (по направлению на запад – W) по сравнению с другими направлениями и превосходящими вероятностное отклонение (для данной скважины определили отклонение – 2 мм (определяется эмпирическим путем). Исходя из максимумов 10 и 11 определили преобладающую ориентацию естественной трещиноватости в направлении W-O (фиг. 2) в продуктивном пласте 12 (фиг. 1).
Так как перепад плотностей между горными породами в зонах 15, 12, 16 и 17 и цементным камнем 4 очень отличается, то граница перехода между ними легко определяется гамма-каротажем детекторами 6, а привязка к направлению сторон N-S и O-W позволяет определить преобладающую ориентацию трещиноватости горных пород.
Предлагаемый способ позволяет определить преобладающую ориентацию естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра.
название | год | авторы | номер документа |
---|---|---|---|
СКВАЖИННОЕ УСТРОЙСТВО ГАММА-ГАММА КАРОТАЖА | 2015 |
|
RU2611591C1 |
УСТРОЙСТВО КОНТРОЛЯ МЕСТОПОЛОЖЕНИЯ ДЕФЕКТОВ ЦЕМЕНТИРОВАНИЯ В ОБСАЖЕННЫХ НАКЛОННО НАПРАВЛЕННЫХ СКВАЖИНАХ | 1991 |
|
RU2072536C1 |
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБСАЖЕННЫХ СКВАЖИН | 2021 |
|
RU2769549C1 |
ПРИБОР ДЛЯ ИССЛЕДОВАНИЯ КАЧЕСТВА ЦЕМЕНТИРОВАНИЯ ОБСАДНОЙ КОЛОННЫ СКВАЖИНЫ В ГОРНОЙ ПОРОДЕ | 2009 |
|
RU2396552C1 |
АППАРАТУРА МУЛЬТИМЕТОДНОГО МНОГОЗОНДОВОГО НЕЙТРОННОГО КАРОТАЖА - ММНК ДЛЯ ВРАЩАТЕЛЬНОГО СКАНИРОВАНИЯ РАЗРЕЗОВ НЕФТЕГАЗОВЫХ СКВАЖИН | 2021 |
|
RU2771437C1 |
КОМПЛЕКСНАЯ АППАРАТУРА ИМПУЛЬСНОГО МУЛЬТИМЕТОДНОГО НЕЙТРОННОГО КАРОТАЖА ДЛЯ ПРОМЫСЛОВО-ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ ОБСАЖЕННЫХ ГАЗОВЫХ И НЕФТЕГАЗОВЫХ СКВАЖИН | 2022 |
|
RU2789613C1 |
Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных | 2016 |
|
RU2624144C1 |
АППАРАТУРА МУЛЬТИМЕТОДНОГО МНОГОЗОНДОВОГО НЕЙТРОННОГО КАРОТАЖА - ММНК ДЛЯ ПОСЕКТОРНОГО СКАНИРОВАНИЯ РАЗРЕЗОВ НЕФТЕГАЗОВЫХ СКВАЖИН | 2021 |
|
RU2769169C1 |
УСТРОЙСТВО ДЛЯ КАРОТАЖА СКВАЖИН, ОБСАЖЕННЫХ МЕТАЛЛИЧЕСКОЙ КОЛОННОЙ | 2011 |
|
RU2488852C1 |
Устройство для каротажа скважин, обсаженных металлической колонной | 2011 |
|
RU2630991C1 |
Использование: для определения ориентации естественной трещиноватости горной породы. Сущность изобретения заключается в том, что осуществляют спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости. Ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемый инклинометром, спускаемым в составе измерительного оборудования. Одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале. Ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение. Чувствительность детекторов гамма-излучения могут регулировать в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения. Технический результат: обеспечение возможности определения преобладающей ориентации естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра. 1 з.п. ф-лы, 3 ил.
1. Способ определения ориентации естественной трещиноватости горной породы, включающий спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости, отличающийся тем, что ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемый инклинометром, спускаемым в составе измерительного оборудования, одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале, а ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение.
2. Способ определения ориентации естественной трещиноватости горной породы по п. 1, отличающийся тем, что чувствительность детекторов гамма-излучения регулируется в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения.
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ЦЕМЕНТНОГО КОЛЬЦА ЗА ОБСАДНОЙ КОЛОННОЙ В СКВАЖИНАХ (ВАРИАНТЫ) | 2004 |
|
RU2254598C1 |
RU 2014151536 A, 10.07.2016 | |||
СПОСОБ ОЦЕНКИ ТРЕЩИННОЙ ПОРИСТОСТИ ПО ДАННЫМ СКВАЖИННОЙ СЕЙСМОРАЗВЕДКИ | 2011 |
|
RU2485553C1 |
Способ определения пространственной ориентации трещины гидроразрыва | 2016 |
|
RU2626502C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СИСТЕМЫ ТРЕЩИН ГИДРОРАЗРЫВА | 2012 |
|
RU2507396C9 |
WO 03054587 A1, 03.07.2003. |
Авторы
Даты
2020-05-29—Публикация
2019-12-11—Подача