Поршневой двухступенчатый компрессор Российский патент 2020 года по МПК F04B39/06 

Описание патента на изобретение RU2722588C1

Изобретение относится к области машин объемного действия и может быть использовано при создании компрессоров среднего и высокого давления.

Широко известны двухступенчатые поршневые компрессоры, содержащие цилиндры первой и второй ступени с размещенными в них поршнями, соединенными с механизмом привода (см., например, кн. Агурин А.П. «Передвижные компрессорные станции». – М.: Высш. шк., 1989, стр. 8, рис. 2; К.И. Страхович,  М.И. Френкель, И.К. Кондряков, В.Ф. Рис. «Компрессорные машины». – М.: Гос. изд-во торговой литературы, стр. 108, рис. 38; М.И. Френкель «Поршневые компрессоры», Л.: Машиностроение, 1969, стр. 106, рис. IY.1).

Известен также поршневой двухступенчатый компрессор, содержащий цилиндры первой и второй ступени, расположенные вдоль общей оси, и размещенные в этих цилиндрах поршни, соединенные с приводом возвратно-поступательного движения, причем поршень одной из ступеней выполнен дисковым и делит свой цилиндр на две части – надпоршневую и подпоршневую полости, а также имеющий систему охлаждения цилиндров (см. С.Е. Захаренко, С.А. Анисимов и др. под ред. С.Е. Захаренко «Поршневые компрессоры», - Л-Д: МАШГИЗ, 1961, с. 133, Фиг. 57, с. 136).

Недостатком известных конструкций является невозможность экономичного сжатия газа до высокого давления (более 50-ти бар) из-за плохого охлаждения, которое в автономном режиме работы может быть только внешним воздушным, а также из-за утечек и перетечек между ступенями.

Технической задачей изобретения является обеспечения возможности экономичного сжатия газа до высокого давления при автономной системе охлаждения цилиндропоршневой группы компрессора.

Указанная задача обеспечивается тем, что в известном поршневом двухступенчатом компрессоре, содержащем цилиндры первой и второй ступени, расположенные вдоль общей оси, и размещенные в этих цилиндрах поршни, соединенные с приводом возвратно-поступательного движения, причем поршень одной из ступеней выполнен дисковым и делит свой цилиндр на две части – надпоршневую и подпоршневую полости, а также имеющий систему охлаждения цилиндров, в соответствии с изобретением со стороны надпоршневой полости дисковый поршень содержит выступ в виде поршня или плунжера, входящий в дополнительный цилиндр, заполненный охлаждающей жидкостью и соединенный с системой охлаждения цилиндра, в которую включена подпоршневая полость. При этом дополнительный цилиндр может быть соединен через кран и обратный клапан с резервной емкостью, между краном и резервной емкостью может быть установлен гидронасос, и этот гидронасос вместе с краном может быть снабжен системой управления, содержащей датчик уровня жидкости, расположенный на дне дополнительного цилиндра, и электрический блок, управляющий положением крана и питанием насоса.

Сущность изобретения поясняется чертежами.

На фиг. 1 схематично показано продольное сечение компрессора, а на фиг. 2 и фиг. 3 – схема управления работой насоса и крана.

Компрессор (фиг. 1) содержит цилиндры 1 первой и 2 второй ступени, расположенные вдоль их общей оси, и размещенные в этих цилиндрах поршни 3 и 4, соединенные штоком 5 с приводом возвратно-поступательного движения 6 (в данном примере - кривошипно-шатунного типа), причем в данном примере поршень 3 первой ступени выполнен дисковым, и делит свой цилиндр 1 на две части – надпоршневую газовую 7 и подпоршневую жидкостную 8 полости. Со стороны надпоршневой полости 7 поршень 3 содержит выступ, выполненный в данном примере в виде поршня 9, входящего в дополнительный цилиндр 10, заполненный охлаждающей жидкостью и соединенный с системой охлаждения 11 цилиндра 1, в которую включена подпоршневая полость 8 и полость 12 цилиндра 10.

Дополнительный цилиндр 10 соединен трубопроводами через кран 13, обратный клапан 14 и гидронасос 15 с резервной емкостью 16, частично заполненной той же жидкостью, которой заполнены цилиндр 10 и полость 12.

Гидронасос 15 с краном 13 снабжены системой управления, содержащей датчик 17 уровня жидкости, расположенный на дне дополнительного цилиндра 10, и электрический блок 18, управляющий положением крана 13 и питанием гидронасоса 15.

В систему охлаждения 11 входят вентилятор 19 и радиатор 20, система межступенчатого охлаждения газа  содержит вентилятор 21 и радиатор 22.

Цилиндры 1 и 2 содержат всасывающие 23 и 24 и нагнетательные 25 и 26 самодействующие клапаны, межступенчатый ресивер 27 служит для гашения пульсации газа, нагнетаемого через клапан 25, и дополнительного охлаждения этого газа. Между полостью 12 и полостью цилиндр 2, а также между полостью 2 и полостью картера 28 установлены сальниковые уплотнения 29 и 30.

Электрический блок 18 (фиг. 2 и 3) содержит электромагнитное реле с катушкой 31, управляющей двумя нормально разомкнутыми контактами 32 и 33. Питание катушки осуществляется низким (например, 12 В) напряжением U1 постоянного тока, одна из линий которого (например, «плюсовая») замыкается через изолированный диэлектрическим корпусам металлический стержень 34 датчика 17, электропроводную жидкость полости 10 и корпус 35 полости 10. Замыкание показано штриховой линией на фиг. 2. Напряжение U2 соответствует стандартному напряжению питания промышленных установок, например, 220 В, 50Гц.

В качестве токопроводящей жидкости может использоваться, например, дистиллированная вода или антифриз в смеси с небольшим (около 2%) хромпиком (калий двухромовокислый, являющийся ингибитором коррозии).

Компрессор работает следующим образом (фиг. 1).

Перед первым пуском компрессор заправляют охлаждающей жидкостью до заполнения полости 12 «до верха» с учетом прогноза расширения жидкости при нагреве во время работы компрессора, а также заливают необходимое количество этой жидкости в емкость 16.

При включении привода 6 поршни 3 и 4 совершаю возвратно-поступательное движение. При этом происходит изменение объема 7 и объема цилиндра 2, в результате чего атмосферный воздух всасывается через клапан 23, сжимается и нагнетается через клапан 26 в ресивер 27. Из ресивера 27 газ через клапан 24 попадает в цилиндр 2 и дожимается до более высокого давления, после чего нагнетается потребителю через клапан 26. До попадания в цилиндр 2 газ охлаждается в радиаторе 22.

Одновременно происходит изменение объема полостей 8 и 12, в результате чего жидкость перетекает между этими полостями в обе стороны, охлаждается в системе охлаждения 11 с одновременным охлаждением стенок цилиндра 1 и поршней 9 и 3.

Рабочие объемы полостей 12 и 8 одинаковы (под рабочим объемом понимается произведение смоченной торцовой площади поршня 3 и поршня 9 на их ход), в связи с чем давления в этих полостях всегда практически одинаковы (гидравлическим сопротивлением радиатора 20 можно пренебречь).

С учетом того, что существует малое гидравлическое сопротивление течению воздуха через зазоры между поршнем 9 и цилиндром 10, а также через зазор между поршнем 3 и цилиндра 1, давление жидкости в полостях 8 и 12 всегда практически равно давлению газа полости 7, и утечки воздуха через зазор между поршнем 3 и стенками цилиндра 1 практически отсутствуют. Это позволяет сжимать воздух в этой ступени сразу до высокого давления. Высокая экономичность процесса сжатия также обеспечивается активным отводом теплоты от сжимаемого газа через хорошо охлаждаемые поверхности цилиндра 1, поршня 2 и поршня 9.

Для обеспечения нормальной работы компрессора необходимо, чтобы полости 8 и 12 всегда были полностью заняты жидкостью, что обеспечивается наличием крана 13 с электромагнитным приводом, обратного клапана 14, гидронасоса 15 с емкостью 16 и электрическим блоком 18 (фиг. 1, 2 и 3).

В штатной ситуации (фиг. 2) жидкость заполняет цилиндр 10 «до верха», линия питания катушки 31 замкнута через жидкость, и, соответственно, контакты 32 питания гидронасоса разомкнуты (он отключен), контакты 33 электромагнита управления краном 13 разомкнуты (кран закрыт).

В процессе работы компрессора есть вероятность небольших утечек через сальники 29 и 30, в результате чего уровень жидкости в полости 12 понижается (фиг. 3). В этом случае цепь питания катушки 31 размыкается, и контакты 32 и 33 переходят в замкнутое состояние. При этом включается насос 15, кран 13 переходит в открытое состояние, и происходит пополнение цилиндра 10 до тех пор, пока цилиндр не заполнится «до верха», что приводит к замыканию цепи питания катушки 31, контакты 32 и 33 размыкаются, поступление жидкости в цилиндр 10 прекращается.

Обратный клапан 14 предотвращает возможные перетечки жидкости через неплотности крана 13.

Хорошее охлаждение газа при сжатии в цилиндре 1 (полость 7) и деталей этой цилиндропоршневой группы, высокоэффективное уплотнение в ней зазоров позволяет с высокой экономичностью сжимать газ в ступени компрессора и дожимать его во второй ступени. Ориентировочно в цилиндре 1 (полость 10) газ может быть сжат от атмосферного давления до 50-60 бар (коэффициент повышения давления, соответственно, – 50-60), после чего во второй ступени (цилиндр 2) газ может быть «дожат» с коэффициентом повышения давления 4-6, характерном для обычных ступеней поршневых компрессоров, и получить газ под давлением до 200-300 бар. То есть, данная конструкция двухступенчатого компрессора может заменить обычный трех-четырехступенчатый поршневой компрессор. Причем все это происходит при автономном воздушном охлаждении.

Таким образом, следует считать, что поставленная техническая задача полностью выполнена.

Похожие патенты RU2722588C1

название год авторы номер документа
Способ работы гидропневматического агрегата и устройство для его осуществления 2020
  • Щерба Виктор Евгеньевич
  • Занин Андрей Владимирович
  • Болштянский Александр Павлович
  • Носов Евгений Юрьевич
RU2736555C1
Способ работы поршневого двухступенчатого компрессора и устройство для его осуществления 2019
  • Занин Андрей Владимирович
  • Щерба Виктор Евгеньевич
  • Болштянский Александр Павлович
  • Носов Евгений Юрьевич
  • Тегжанов Аблай-Хан Савитович
RU2722116C1
СПОСОБ ВЗАИМНОГО ПРЕОБРАЗОВАНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ И ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ СЖАТОГО ГАЗА 2013
  • Куликов Леонид Борисович
RU2520793C1
СПОСОБ РАБОТЫ НАСОС-КОМПРЕССОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
  • Кужбанов Акан Каербаевич
  • Павлюченко Евгений Юрьевич
  • Лысенко Евгений Алексеевич
RU2538371C1
Тепловой двигатель,использующий расширение и сжатие жидкости 1986
  • Фролов Евгений Петрович
  • Каляев Владимир Викторович
  • Иваненко Ольга Владимировна
  • Ларцева Надежда Александровна
SU1420192A1
СПОСОБ РАБОТЫ ПОРШНЕВОГО ГИДРОПНЕВМАТИЧЕСКОГО АГРЕГАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
  • Кужбанов Акан Каербаевич
  • Павлюченко Евгений Александрович
  • Кузеева Диана Анатольевна
RU2565932C1
Тепловой поршневой двигатель замкнутого цикла 2019
  • Меньшов Владимир Николаевич
RU2718089C1
СПОСОБ ОСУЩЕСТВЛЕНИЯ ЦИКЛА ПОРШНЕВОГО ДВИГАТЕЛЯ И ПОРШНЕВОЙ ДВИГАТЕЛЬ 2011
  • Сладкевич Владислав Петрович
  • Гарбузов Александр Юрьевич
  • Письменный Игорь Сергеевич
RU2477375C2
ПОРШНЕВОЙ КОМПРЕССОР С РУБАШЕЧНЫМ ОХЛАЖДЕНИЕМ 2015
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
  • Павлюченко Евгений Александрович
  • Кузеева Диана Анатольевна
  • Носов Евгений Юрьевич
RU2603498C1
Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения 2016
  • Щерба Виктор Евгеньевич
  • Болштянский Александр Павлович
  • Лобов Игорь Эдуардович
  • Баженов Алексей Михайлович
  • Кондюрин Алексей Юрьевич
  • Залознов Иван Павлович
  • Григорьев Александр Валерьевич
  • Носов Евгений Юрьевич
RU2640658C1

Иллюстрации к изобретению RU 2 722 588 C1

Реферат патента 2020 года Поршневой двухступенчатый компрессор

Изобретение относится к области машин объемного вытеснения и может быть использовано при создании компрессоров среднего и высокого давления. Поршневой двухступенчатый компрессор содержит цилиндры 1 первой и 2 второй ступени, поршни 3 и 4, соединенные штоком 5 с приводом возвратно-поступательного движения 6. Поршень 3 делит цилиндр 1 на две части – газовую 7 и жидкостную 8 полости и содержит выступ в виде поршня 9, входящего в дополнительный цилиндр 10, заполненный охлаждающей жидкостью,  соединенный с системой охлаждения 11 цилиндра 1, в которую включена подпоршневая полость 8 и полость 12 цилиндра 10. Достигается возможность сжатия газа в двух ступенях компрессора до давления выше 100 бар. Данная конструкция может заменить обычный трех-четырехступенчатый поршневой компрессор. 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 722 588 C1

1. Поршневой двухступенчатый компрессор, содержащий цилиндры первой и второй ступени, расположенные вдоль общей оси, и размещенные в этих цилиндрах поршни, соединенные с приводом возвратно-поступательного движения, причем поршень одной из ступеней выполнен дисковым и делит свой цилиндр на две части – надпоршневую и подпоршневую полости, а также имеющий систему охлаждения цилиндров, отличающийся тем, что со стороны надпоршневой полости дисковый поршень содержит выступ в виде поршня или плунжера, входящий в дополнительный цилиндр, заполненный охлаждающей жидкостью и соединенный с системой охлаждения цилиндра, в которую включена подпоршневая полость.

2. Поршневой двухступенчатый компрессор по п. 1, отличающийся тем, что дополнительный цилиндр соединен через кран и обратный клапан с резервной емкостью.

3. Поршневой двухступенчатый компрессор по п. 2, отличающийся тем, что между краном и резервной емкостью установлен гидронасос.

4. Поршневой двухступенчатый компрессор по п. 3, отличающийся тем, что гидронасос снабжен системой управления, содержащей датчик уровня жидкости, расположенный на дне дополнительного цилиндра, и электрический блок, управляющий положением крана и питанием насоса.

Документы, цитированные в отчете о поиске Патент 2020 года RU2722588C1

С.Е
ЗАХАРЧЕНКО и др., ПОРШНЕВЫЕ КОМПРЕССОРЫ, Л-Д, МАШГИЗ, 1961, стр.133 фиг.57, стр.136
Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения 2016
  • Щерба Виктор Евгеньевич
  • Болштянский Александр Павлович
  • Лобов Игорь Эдуардович
  • Баженов Алексей Михайлович
  • Кондюрин Алексей Юрьевич
  • Залознов Иван Павлович
  • Григорьев Александр Валерьевич
  • Носов Евгений Юрьевич
RU2640658C1
Двухступенчатый воздушный компрессор 1978
  • Веслав Вильчопольски
  • Тадзуш Жаба
  • Рышард Рахвал
  • Казимеж Носаль
SU862840A3
CN 206707965 U, 05.12.2017.

RU 2 722 588 C1

Авторы

Щерба Виктор Евгеньевич

Шалай Виктор Владимирович

Носов Евгений Юрьевич

Тегжанов Аблай-Хан Савитович

Даты

2020-06-01Публикация

2019-10-21Подача