Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств Российский патент 2020 года по МПК A61F2/07 A61L27/06 A61L27/34 A61L27/54 

Описание патента на изобретение RU2723588C1

Изобретение относится к медицине, в частности к технологии получения композиционного биомедицинского материала "никелид титана - полилактид" с возможностью контролируемой доставки лекарственных средств.

В последние годы все больше применяются такие медицинские изделия как стенты различной конфигурации, как правило, представляющие собой цилиндры из нескольких переплетенных проволок или тонких свернутых пластин с множеством отверстий и служащие для расширения сузившихся или полностью перекрытых полостей организма (сосудов, ЖКТ и др.).

Чаще всего стенты устанавливаются, когда атеросклеротические бляшки блокируют кровеносный сосуд. Эти бляшки состоят из холестерина и других веществ, которые прикрепляются к стенкам сосуда и там накаливаются. Закупорка может привести к инфаркту миокарда или апоплексии. Помимо кровеносных сосудов, стенты могут открыть любой из следующих проходов: желчные протоки, которые несут желчь, бронхи, которые представляют собой небольшие дыхательные пути в легких, мочеточники, которые несут мочу от почек до мочевого пузыря и другие. Вблизи или внутри этих проходов может появится новообразование, которое приведет к сужению или закупорке просвета.

Из-за постоянного контакта имплантатов с тканями живого человеческого организма материал для их изготовления должен обладать рядом физико-химических свойств, которые обеспечивали бы биосовместимость изделия. Примерно 30 лет назад для использования в медицине впервые начали применять новый класс материалов - сверхэластичные сплавы с памятью формы. Основой для них явился никелид титана, а также его сплавы. Новый материал обладал нужными физико-механическими свойствами, схожими с тканями организма.

Но медицинский имплантат типа «стент», как чужеродное тело, при контакте с кровью может вызвать развитие повторного сужения просвета (рестеноза). Существует три разные причины рестеноза, вызванные имплантатом:

а) В течении первых нескольких дней после имплантации поверхность стента находится в прямом контакте с кровью, что может привести к острому тромбозу, который снова закрывает просвет из-за присутствующей внешней поверхности.

б) Имплантация стента может вызывать повреждения сосудов, которые вызовут воспалительные реакции, в течение первых семи дней, в дополнение к вышеупомянутому тромбозу.

в) Через пару недель стент может начать прорастать в ткань кровеносного сосуда. Это означает, что стент полностью будет окружен гладкомышечными клетками и не будет иметь контакта с кровью. Данный эффект может привести не только к покрытию поверхности стента, но и к окклюзии всего внутреннего пространства стента.

Сейчас используются стенты, отличающиеся различным дизайном исполнения, материалом изготовления, а также видом (саморасширяющиеся, расширяемые воздушным баллончиком; растворимые и нет; с лекарственным покрытием и без), но ни один из них не может полностью обеспечить устранение проблемы (рестеноза).

Решение состоит в нанесении полимерного слоя (полилактида) на медицинское изделие типа «стент», которое обладает биосовместимостью, относительной инертностью, хорошими механическими свойствами, биодеградацией, а также он способен удерживать в своей структуре растворенное вещество (лекарство), и за счет этого производить доставку лекарств локально в нужной концентрации в течении определенного времени для дополнительного медикаментозного воздействия и предотвращения воспалительных реакций и избавления от рестеноза. Полилактид, т.е. полилактическая кислота, которую обычно получают из димера молочной кислоты, т.е. лактида, уже в течение многих лет используется в медицинских целях, например, при изготовлении хирургических швов, для разлагаемых нитей и для контролируемого высвобождения лекарственных средств.

В патенте CN 10405629 7А получали пленки полилактида методом растворения 10% полимера в дихлорметане, перемешивая его в магнитной мешалке в течение 24 часов до получения гомогенной системы. В специальном устройстве получали волокнистые мембраны и сушили их при 40°С в течении 12 часов. Данный метод требует достаточно длительного количества времени производства пленок.

В патенте US 611792 8А механические свойства пленок полилактида были усовершенствованы путем добавления к полимеру глицерол эфирных пластификаторов, но эти пластификаторы приводят к быстрому гидролизу и вызывают проблемы с адгезией. Также механические свойства пленок достаточны для применения в качестве поверхностного слоя на стент, поэтому в добавлении пластификаторов нет необходимости.

В патенте US 20040034409 А1 полилактид, с молекулярной массой более 200 кДа, наносился на стент для предотвращения рестеноза. Было обнаружено, что применение высокомолекулярного полилактида приводит к снижению воспалительных процессов. В патенте упоминается о том, что можно вводить лекарственные вещества в полимер и локально доставлять их к месту поражения, но конкретные исследования этого не проводились.

В патенте US 20050060028 А1, который является наиболее близким, стенты покрываются одним или несколькими поверхностными слоями, которые содержат антипролиферативный и/или противовоспалительный и при необходимости антитромботический активный агент.Гемосовместимое покрытие стента обеспечивает требуемую совместимость с кровью, а активный агент (или комбинация активных агентов), который равномерно распределяется по всей поверхности стента, обеспечивает покрытие поверхности стента клетками. Таким образом, на поверхности стента не происходит быстрой популяции и чрезмерного роста клеток, которое может привести к рестенозу, однако покрытие поверхности стента клетками может повысить риск возникновения тромбоза.

Задача данного изобретения состоит в получении композиционного биомедицинского материала "никелид титана - полилактид" для изготовления медицинского изделия типа «стент» с возможностью контролируемой доставки лекарственных средств в течении определенного времени, достаточного для предотвращения отторжения имплантата тканями.

Технический результат заключается в получении композиционного материала и изучении поверхностного слоя, а именно в получении однородных пленок полилактида с лекарством и контроль скорости выхода лекарственного средства в течении определенного времени.

Достижение технического результата включает в себя следующие этапы:

1) Приготовление гомогенного раствора полимера (полилактида), добавление лекарственного средства, нанесение полимера с лекарственным средством на проволоку методом окунания и дальнейшая сушка.

2) Используется полилактид с различной молекулярной массой (45 кДа, 90 кДа, 180 кДа)

3) В качестве растворителя для приготовления растворов используется хлороформ в количестве 100, 150 и 200 миллилитров.

4) Лекарственные вещества, а именно гентамицин, цефотаксим и линкомицин, добавляются в количестве от 1 до 8% вес.

5) Фиксация полимера достигается сушкой при комнатной температуре (20°С - 22°С)

Сущность изобретения

Поддержание определенного уровня лекарства, не смотря на ток крови, достигается контролируемой биодеградацией и выходом лекарственного средства из поверхностного полимерного слоя.

В качестве исходных материалов использовали следующие реактивы: Поли-D,L-лактид (45 кДа, ООО "МЕДИН-Н, Россия), Поли-D,L-лактид (90 кДа, ООО "МЕДИН-Н, Россия), Поли-D,L-лактид (180 кДа, ООО "МЕДИН-Н, Россия), Хлороформ (ОСЧ, поставщик ООО «Компонент-Реактив», Россия), проволока TiNi диаметром 280 мкм после отжига и полировки (ИМЕТ РАН).

Растворы полилактида готовят на основе особо чистого хлороформа в количестве от 100 до 200 миллилитров. Было установлено, что количество хлороформа, в данном диапазоне, не влияет на свойства получаемых полимерных пленок, поэтому для получения пленок с лекарственным средством использовалось 100 миллилитров растворителя. Был использован полилактид с различной молекулярной массой (45, 90 и 180 кДа) и установлено, что оптимальными прочностными и пластическими свойствами для применения в качестве поверхностного слоя на стент обладает полилактид с молекулярной массой 180 кДа. Полимерные пленки создавались с использованием 1, 3 и 5 грамм полимера. Оптимальной выбрана концентрация 3 грамма, способствующая формированию толщины 82-125 мкм. В качестве наполнителя используются антибиотики (линкомицин, цефотоксим, гентамицин), которые вводили в остывший (+30°С) раствор полилактида в концентрации 1, 3, 5 и 8% вес. При испарении хлороформа полимер с лекарственным средством образуют связку с равномерным распределением лекарства. Скорость биодеградации полимерной пленки из полилактида зависит от среды и типа антибиотика и составляет от 180 до 358 дней, а скорость выхода лекарственного средства зависит от антибиотика и его концентрации от 1 до 8% вес. Варьируя состав и толщину полимерного слоя можно добиться различной биодеградации и подобрать под конкретное применение.

Пример 1.

Композиционный материал получали нанесением поверхностного слоя из полилактида с введнным лекаственным средством (гентамицином) на проволоку из никелида титана.

Растворы полилактида готовят на основе особо чистого хлороформа объемом 100 миллилитров, который наливали в колбу объемом 300 миллилитров и нагревали до 50°С на магнитной мешалке. После нагрева в колбу помещался полимер (полилактид 180 кДа) навеской массы 3 грамма (±0,001 г). Для достижения гомогенного состояния раствор полимера в течении 1 часа перемешивается на электронной верхнеприводной мешалке при температуре 50°С. Затем полученному гомогенному раствору давали остыть до 30°С и вводили в него лекарственное средство (гентамицин) в количестве 1, 3, 5, 8% от массы полимера (в раствор с 3000 мг полимера добавляется 30,303 мг - 1%, 92,784 мг - 3%, 157,895 мг - 5% или 260,870 мг - 8% лекарства). Измельчение лекарства в растворе и достижение гомогенности осуществляется с помощью диспергатора при скорости 5000 об/мин в течении 10 минут.

Обезжиренная TiNi проволока окунается в остывший (+30°С) раствор полилактида с лекарственным средством и выдерживается в течение 5 минут. Затем проводится извлечение материала из раствора и сушка при комнатной температуре (20-22°С) в течение 24 часов.

На рисунке 1 можно наблюдать кинетику выхода гентамицина из полимерного слоя в растворы моделирующие внеклеточные жидкости организма (рис. 1а - рН 5,3; рис. 1б - рН 7,4; рис. 1в - рН 9,0). Можно видеть, что спустя 1 сутки наблюдалось скачкообразное появление антибиотика, а затем его равномерный выход. Увеличение концентрации антибиотика приводило к большему количеству выхода лекарства в 1 сутки.

Пример 2.

Композиционный материал получали нанесением поверхностного слоя из полилактида с введнным лекаственным средством (цефотаксимом) на проволоку из никелида титана.

Растворы полилактида готовят на основе особо чистого хлороформа объемом 100 миллилитров, который наливали в колбу объемом 300 миллилитров и нагревали до 50°С на магнитной мешалке. После нагрева в колбу помещался полимер (полилактид 180 кДа) навеской массы 3 грамма (±0,001 г). Для достижения гомогенного состояния раствор полимера в течении 1 часа перемешивается на электронной верхнеприводной мешалке при температуре 50°С. Затем полученному гомогенному раствору давали остыть до 30°С и вводили в него лекарственное средство (цефотаксим) в количестве 1, 3, 5, 8% от массы полимера (в раствор с 3000 мг полимера добавляется 30,303 мг - 1%, 92,784 мг - 3%, 157,895 мг - 5% или 260,870 мг - 8% лекарства). Измельчение лекарства в растворе и достижение гомогенности осуществляется с помощью диспергатора при скорости 5000 об/мин в течении 10 минут.

Обезжиренная TiNi проволока окунается в остывший (+30°С) раствор полилактида с лекарственным средством и выдерживается в течение 5 минут. Затем проводится извлечение материала из раствора и сушка при комнатной температуре (20-22°С) в течение 24 часов.

На рисунке 2 можно наблюдать кинетику выхода цефотаксима из полимерного слоя в растворы моделирующие внеклеточные жидкости организма (рис. 2а - рН 5,3; рис. 2б - рН 7,4; рис. 2в - рН 9,0). Можно видеть, что спустя 1 сутки наблюдалось скачкообразное появление антибиотика, а затем его равномерный выход. Увеличение концентрации антибиотика приводило к большему количеству выхода лекарства в 1 сутки.

Пример 3.

Композиционный материал получали нанесением поверхностного слоя из полилактида с введнным лекаственным средством (линкомицином) на проволоку из никелида титана.

Растворы полилактида готовят на основе особо чистого хлороформа объемом 100 миллилитров, который наливали в колбу объемом 300 миллилитров и нагревали до 50°С на магнитной мешалке. После нагрева в колбу помещался полимер (полилактид 180 кДа) навеской массы 3 грамма (±0,001 г). Для достижения гомогенного состояния раствор полимера в течении 1 часа перемешивается на электронной верхнеприводной мешалке при температуре 50°С. Затем полученному гомогенному раствору давали остыть до 30°С и вводили в него лекарственное средство (линкомицин) в количестве 1, 3, 5, 8% от массы полимера (в раствор с 3000 мг полимера добавляется 30,303 мг - 1%, 92,784 мг - 3%, 157,895 мг - 5% или 260,870 мг - 8% лекарства). Измельчение лекарства в растворе и достижение гомогенности осуществляется с помощью диспергатора при скорости 5000 об/мин в течении 10 минут.

Обезжиренная TiNi проволока окунается в остывший (+30°С) раствор полилактида с лекарственным средством и выдерживается в течение 5 минут. Затем проводится извлечение материала из раствора и сушка при комнатной температуре (20-22°С) в течение 24 часов.

На рисунке 3 можно наблюдать кинетику выхода линкомицина из полимерного слоя в растворы моделирующие внеклеточные жидкости организма (рис. 3а - рН 5,3; рис. 3б - рН 7,4; рис. 3в - рН 9,0). Можно видеть, что спустя 1 сутки наблюдалось скачкообразное появление антибиотика, а затем его равномерный выход. Увеличение концентрации антибиотика приводило к большему количеству выхода лекарства в 1 сутки.

Похожие патенты RU2723588C1

название год авторы номер документа
Способ получения композиционного биомедицинского материала «никелид титана-полилактид» с возможностью контролируемой доставки лекарственных средств 2020
  • Каплан Михаил Александрович
  • Баикин Александр Сергеевич
  • Севостьянов Михаил Анатольевич
  • Насакина Елена Олеговна
  • Сергиенко Константин Владимирович
  • Конушкин Сергей Викторович
  • Колмакова Анастасия Алексеевна
RU2733708C1
Способ получения биосовместимого композиционного материала с основой из наноструктурного никелида титана и биодеградируемым лекарственным слоем полилактид с гепарином 2019
  • Колмакова Анастасия Алексеевна
  • Баикин Александр Сергеевич
  • Севостьянов Михаил Анатольевич
  • Насакина Елена Олеговна
  • Сергиенко Константин Владимирович
  • Каплан Михаил Александрович
  • Колмаков Алексей Георгиевич
RU2737827C1
СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМОГО ПОЛИМЕРНОГО ПОКРЫТИЯ С КОНТРОЛИРУЕМЫМ ВЫХОДОМ ЛЕКАРСТВЕННОГО СРЕДСТВА ДЛЯ МАЛОИНВАЗИВНОЙ ХИРУРГИИ 2015
  • Севостьянов Михаил Анатольевич
  • Баикин Александр Сергеевич
  • Федотов Александр Юрьевич
  • Насакина Елена Олеговна
  • Тетерина Анастасия Юрьевна
  • Сергиенко Константин Владимирович
  • Колмаков Алексей Георгиевич
  • Комлев Владимир Сергеевич
  • Баринов Сергей Миронович
RU2585576C1
Способ получения биодеградируемого полимерного покрытия на основе полилактида на проволоке TiNbTaZr 2018
  • Баикин Александр Сергеевич
  • Севостьянов Михаил Анатольевич
  • Насакина Елена Олеговна
  • Сергиенко Константин Владимирович
  • Каплан Михаил Александрович
  • Колмакова Анастасия Алексеевна
  • Конушкин Сергей Викторович
  • Шатова Людмила Анатольевна
  • Кирсанкин Андрей Александрович
  • Колмаков Алексей Георгиевич
RU2686747C1
Способ получения композиционного материала "Ti-Nb-Ta-Zr - полигликолидлактид с введенным лекарственным препаратом" 2019
  • Баикин Александр Сергеевич
  • Севостьянов Михаил Анатольевич
  • Насакина Елена Олеговна
  • Сергиенко Константин Владимирович
  • Каплан Михаил Александрович
  • Колмакова Анастасия Алексеевна
  • Конушкин Сергей Викторович
  • Шатова Людмила Анатольевна
  • Царева Алена Михайловна
  • Колмаков Алексей Георгиевич
RU2730531C1
Медицинское изделие стент с полимерными покрытиями 2019
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Конушкин Сергей Викторович
  • Каплан Михаил Александрович
  • Царева Алена Михайловна
RU2737505C1
Стент с лекарственным покрытием и способ его получения 2021
  • Требушат Дмитрий Владимирович
  • Заполоцкий Евгений Николаевич
RU2775427C1
Способ получения биоактивного покрытия c бактерицидными свойствами на имплантате из титана 2019
  • Смирнова Лариса Александровна
  • Гусейнова Мария Арифовна
  • Саломатина Евгения Владимировна
  • Горшенин Михаил Константинович
  • Смирнова Ольга Николаевна
RU2719475C1
СТЕНТ 2007
  • Кюштерс Сабина
  • Хоррес Роланд
  • Хофман Михель
  • Хофман Эрика
RU2432183C9
ЭНДОПРОТЕЗЫ, ИМЕЮЩИЕ ПОКРЫТИЕ АКТИВНЫМ СОЕДИНЕНИЕМ 2012
  • Хоффманн Эрика
  • Хоффманн Михаэль
  • Хоррес Роланд
  • Эрдтманн Мартин
  • Хорбах Хельмут
RU2592367C2

Иллюстрации к изобретению RU 2 723 588 C1

Реферат патента 2020 года Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора полилактида с молекулярной массой 180 кДа в хлороформе. В остывший до 30°С раствор полилактида добавляют лекарственное средство гентамицин, цефотаксим или линкомицин в концентрации от 1% до 8% вес. Окунают проволоку из никелида титана (TiNi) в остывший до 30°С раствор полилактида с лекарственным средством, выдерживают в течение 5 мин. Извлекают полученный материал и сушат при комнатной температуре 20-22°С в течение 24 ч. Изобретение позволяет получать однородные по толщине пленки полилактида с лекарством с возможностью контролируемой доставки лекарственных средств в течение определенного времени, достаточного для предотвращения отторжения имплантата тканями. 3 ил., 3 пр.

Формула изобретения RU 2 723 588 C1

Способ получения биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственного средства, включающий растворение полилактида в хлороформе, добавление лекарственного средства, окунание проволоки в раствор из полилактида с лекарством, выдержку и дальнейшую сушку, отличающийся тем, что получают раствор полилактида с молекулярной массой 180 кДа, в остывший до 30°С раствор полилактида добавляют лекарственное средство гентамицин, цефотаксим или линкомицин в концентрации от 1% до 8% вес., окунают проволоку из никелида титана (TiNi) в остывший до 30°С раствор полилактида с лекарственным средством, выдерживают в течение 5 мин, извлекают полученный материал и сушат при комнатной температуре 20-22°С в течение 24 ч.

Документы, цитированные в отчете о поиске Патент 2020 года RU2723588C1

US 2005060028 A1, 17.03.2005
СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМОГО ПОЛИМЕРНОГО ПОКРЫТИЯ С КОНТРОЛИРУЕМЫМ ВЫХОДОМ ЛЕКАРСТВЕННОГО СРЕДСТВА ДЛЯ МАЛОИНВАЗИВНОЙ ХИРУРГИИ 2015
  • Севостьянов Михаил Анатольевич
  • Баикин Александр Сергеевич
  • Федотов Александр Юрьевич
  • Насакина Елена Олеговна
  • Тетерина Анастасия Юрьевна
  • Сергиенко Константин Владимирович
  • Колмаков Алексей Георгиевич
  • Комлев Владимир Сергеевич
  • Баринов Сергей Миронович
RU2585576C1
СЕВОСТЬЯНОВ М.А
и др
"Кинетика высвобождения антибиотика линкомицин из биодеградируемых биополимерных мембран на основе полилактида в водных растворах"
Успехи современного естествознания, 2016, no.5 (часть 1), с.43-46
КАПЛАН М
А
"Нитинол с биодеградируемым поверхностным слоем."

RU 2 723 588 C1

Авторы

Каплан Михаил Александрович

Баикин Александр Сергеевич

Севостьянов Михаил Анатольевич

Насакина Елена Олеговна

Сергиенко Константин Владимирович

Колмаков Алексей Георгиевич

Конушкин Сергей Викторович

Шатова Людмила Анатольевна

Леонов Александр Владимирович

Колмакова Анастасия Алексеевна

Даты

2020-06-16Публикация

2019-01-17Подача