Изобретение относится к медицине и предназначено для индукции гибели опухолевых клеток в живых биологических объектах натриевой соли гематопорферина, содержащихся в медицинском препарате «Фотогем» и янтарной кислотой (ЯК) и энергией волнового ВЧ и СВЧ излучения, известное как ВЧ и СВЧ гипертермия.
Известны способы инициации гибели опухолевых клеток ВЧ и СВЧ гипертермией. Гипертермией именуют, в медицине как значительное повышение температуры тела человека более 40°С. Гипертермия лечения рака использовалась еще полвека назад. Немецкий врач фон Арденне открыл "тепловую" клинику на водяной бане для безнадежно онкологически больных, которых он нагревал до 42°С. После такой процедуры выживало не более 17% людей, но они полностью излечивались. Остальные умирали, не выдерживая такую высокую температуру. Данная технология и сейчас используется в США, где нагревают организм человека до 42,5°С, с последующим возвращением его к жизни. Данная технология лечения может эффективно использоваться при избирательном нагреве онкологических тканей ВЧ и СВЧ энергией без существенного повышения температуры здоровых тканей, окружающих опухоли.
Известен комплекс диагностики и разрушения опухолевых тканей лазерами и раствором натриевой соли гематопорферина. Предлагается в данный комплекс исключить лазеры и включить янтарную кислоту и комплекс натриевой соли гематопорферина и ВЧ и СВЧ облучения опухолевых тканей. Комплекс натриевой соли гематопорферина препарата "Фотогем" и янтарной кислоты на клеточной мембране, принимаемых онкоклетками за глюкозу. Данный комплекс натриевой соли гематопорферина препаратов «Фотогем» и ЯК и их производных, используют для получения лекарственных средств, обладающих противоопухолевой активностью
Способ инициации гибели опухолевых клеток электромагнитной энергией волнового ВЧ и СВЧ излучения, заключается в комплексном одновременном воздействии натриевой соли гематопорферина и янтарной кислоты, к которым относится препарат «Фотогем» и "Янтарная кислота" предназначенных для внутривенного введения и приема внутрь человеком, и волнового облучения электромагнитной энергией ВЧ и СВЧ. Препарат "Фотогем", очень хорошо растворяется в водных растворах. После приема раствора препарата «Фотогем» и янтарной кислоты, для их сохранения в значительном количестве в опухолевых тканях организма человека необходимо время для их накопления в опухолевых тканях до 48-72 часов. Максимальное содержание натриевой соли гематопорферина и янтарной кислоты, в опухолевых тканях наступает именно в этот период времени и оно в опухолевых тканях в 8-10 раз выше, чем в здоровых за счет избирательного поглощения комплекса кислот опухолевыми тканями.
Затем уровень, после 72 часов, натриевой соли гематопорферина препарата "Фотогем" в опухоли постепенно снижается, достигая исходных значений через 14 дней после введения препарата "Фотогем" внутривенно (капельно) с 30 минутной инфузией в полузатемненном помещении в однократной дозе 2-3 мг/кг массы тела с предварительным разведением в 40 мл 0.9% раствора натриевой соли, препарат хранят в темном месте, за 24 часа до проведения диагностики и гипертермии опухолевых тканей ВЧ и СВЧ энергией волнового излучения, после которой опухоли денатурируют и в течение 2-4 недель продукты распада опухолевых клеток выводятся организмом самостоятельно. В течение 48-72 часов после введения "Фотогема" больной должен быть изолирован от яркого солнечного света. Допускается нахождение пациента в помещении с искусственным источником света.
Ряд исследователей утверждают, что янтарная кислота, являющаяся прооксидантом, нейтрализующая свободные радикалы, в крови и тканях убивают раковые клетки, не затрагивая здоровых, за счет вызываемого локального оксидативного стресса-процесса повреждения, в результате окисления, клеточной ДНК и истощения аденозинтрифосфата (АТФ)-источника энергии клетки. Янтарная кислота в числе других сопутствующих ей молекул, за счет агрессивного воздействия, вызывает сбой функционирований определенного фермента, ответственного за "питание" клеток злокачественных опухолей. ЯК-это представитель интермедиантных кислот, которые могут накапливаться в цитозоле клеток.
Янтарная кислота не имеет побочных эффектов и практически безвредна. Единственное, ее неприятное качество - она может раздражать слизистую желудка, поэтому ее нельзя употреблять натощак. Также янтарная кислота обладает способностью усиливать лечебный эффект медикаментов. Янтарная кислота действует только там, где в ней ощущается нехватка, скапливаясь в поврежденных местах, то есть ее воздействию адресно, чего практически нельзя сказать ни об одном лекарственном средстве.
Янтарная кислота служит универсальным промежуточным продуктом обмена веществ, выделяющимся при взаимодействии сахаридов, протеинов и жиров в живых клетках. Активность сукцинатов в организме связана с производством энергии, затрачиваемой на жизнедеятельность всех органов и систем. При увеличении нагрузки на какой-либо орган или систему организма, энергия для их работы в основном обеспечивается в результате процесса окисления сукцинатов. Механизм производства энергии, использующий сукцинаты, работает в сотни раз эффективнее, чем все другие механизмы производства энергии в организме. Именно благодаря этому янтарная кислота обладает неспецифическим лечебным эффектом при целом ряде заболеваний разной этиологии. Также янтарная кислота оказывает антивирусное и антигипоксическое действие.
Лабораторные исследования продемонстрировали, что применение янтарной кислоты вызывало более интенсивное усвоение кислорода живыми клетками. Окисление янтарной кислоты является необходимой ступенью в процессе усвоения клетками двухатомного кислорода. Терапевтический эффект сукцинатов основан на модифицирующем воздействии на клеточный обмен веществ - клеточное дыхание, транспорт микроэлементов, продукцию протеинов. При этом степень и специфика модификаций зависят от первоначального состояния тканей. В результате таких модификаций оптимизируются параметры работы тканей.
Ученые доказали, что янтарная кислота и сукцинаты являются адаптогенами (увеличивают сопротивляемость организма неблагоприятным факторам внешней среды). Янтарная кислота стимулирует процесс поступления кислорода в клетки, облегчает стресс, восстанавливает энергообмен, нормализует процесс производства новых клеток, обладает общеукрепляющими и восстанавливающими свойствами. Активность янтарной кислоты в организме человека регулируется гипоталамусом и надпочечными железами. Восстанавливая баланс биохимических реакций в организме, сукцинаты нормализуют функции всех органов и тканей. Особенно существенно их влияние на головной мозг, который более всего нуждается в бесперебойной доставке кислорода и энергии. Поэтому янтарная кислота применяется для профилактики патологий мозга, развивающихся в процессе старения. Кроме того, она восстанавливает функции всей нервной системы и препятствует стрессам.
В тех ситуациях, когда доставка кислорода недостаточна, чтобы обеспечить функциональную нагрузку (работу) энергией, происходит активация анаэробного гликолиза, и в тканях накапливается конечный продукт гликолиза - молочная кислота (лактат). Во всех живых клетках - будь то клетки животных или растений, грибов или бактерий - содержатся особые тельца размером в несколько микрон, которые названы митохондриями. В митохондриях в основном образуются и используются для последующих реакций янтарная кислота.
При достаточном кислородном обеспечении все органические кислоты сгорают в специализированных клеточных органеллах-митохондриях за счет потребляемого из воздуха кислорода. В аэробных условиях продукты гликолиза, окисления жирных кислот и аминокислоты сгорают-окисляются с участием кислорода в митохондриях - клеточных органеллах, выполняющих роль основного источника энергии. Аккумуляция происходит в дыхательной цепи - полиферментном комплексе, расположенном в мембране митохондрий отрицательно заряженных ритикуламах.
Как показали исследования профессора Института теоретической и экспериментальной биофизика Российской Академии наук М.Н.Кондрашовой, энергетическая мощность процесса синтеза АТФ при окислении янтарной кислоты существенно выше, чем при окислении любого другого субстрата. Именно поэтому многие энергозависимые, то есть потребляющие энергию процессы, например, аккумуляция ионов кальция и обеспечение биосинтезов водородом, даже в изолированных митохондриях, могут идти лишь при окислении янтарной кислоты. Работами школы М.Н. Кондрашовой показано, что в природе существуют и при необходимости активируются дополнительные пути образования янтарной кислоты. В частности, такое дополнительное «впрыскивание» янтарной кислоты у здорового человека происходит при интенсивной работе и в период восстановления после нагрузок, когда особенно высока потребность в быстром воспроизводстве АТФ.
При гипоксии дыхательная цепь митохондрий не может принять на себя водород от какого-либо иного субстрата, кроме янтарной кислоты. Ведь именно при ее окислении водород поступает на значительно более близкий к кислороду участок дыхательной цепи. При этом на участке даже при глубокой гипоксии сохраняется способность принимать водород. В этом случае окисление янтарной кислоты в митохондриях остается одним из немногих источников АТФ. Дополнительное поступление янтарной кислоты может существенно помочь жизнедеятельности организма та янтарная кислота, которая образуется в митохондриях, там же моментально и сгорает, поэтому текущая - стационарная концентрация присутствующей в тканях янтарной кислоты не превышает в каждый момент времени 10-20 мг/кг массы ткани и, как правило, из митохондрий не выходит. Вне митохондрий, вне клетки, в кровотоке ее практически нет. Она появляется вне митохондрий во время тяжелого анаэробиоза (полного отсутствия кислорода) или при глубокой гипоксии в каком-то участке ткани.
В условиях нехватки кислорода некоторая часть клеток гибнет, а другие клетки приспосабливаются к таким условиям и меняются. Они восполняют недостаток энергии не за счет поступления кислорода, а за счет развития своей внутренней активности. Нарушение дыхания, приводящее к возникновению рака, не столь сильно, чтобы привести к гибели клетки.
Формирование раковых клеток из нормальных происходит в два этапа. Сначала после необратимого нарушения дыхания наступает довольно длительный период незаметного течения болезни. Пораженные клетки как бы отстаивают свое право на существование. С момента образования первой раковой клетки до формирования раковой опухоли, которую можно выявить клинически, проходит срок не менее 2 лет. В пораженных клетках гораздо активнее протекают энергетические реакции. Отсюда вытекает возможность лечить рак, воздействуя на энергетические реакции в клетках. Янтарная кислота является уникальным средством, способным влиять на энергетический обмен.
Натриевые соли гематопорферина препарата "Фотогем", окисляется перекисью водорода производной сукцинатов (ЯК) в щелочной среде, реакция катализируется гемом железа, и вызывает хемилюминисенцию с активным выделением синглетного кислорода. Если к щелочному раствору онкоклеток добавить окислитель- перекись водорода, то происходит свечение. В присутствии катализаторов это свечение усиливается, и становится более ярким. Роль катализаторов раствора натриевой соли гематопорферина препарата "Фотогем", осуществляется гемином железа крови и различными натриевыми соединениями. Данные химические активаторы хемилюминисенции вступают в химические реакции с активными формами кислорода, вырабатываемые янтарной кислотой, или органическими свободными радикалами, в ходе которых образуются молекулы клеток в возбужденном электронном состоянии. Наблюдение при этом свечении под действием ВЧ и СВЧ энергии связано с переходом молекул в свое основное состояние, что приводит к высвечиванию фотонов. Активатором возбужденного состояния является натриевой соли гематопорферина препарата "Фотогем" в присутствии радикалов кислорода. Под действием ЯК окислителя- радикалов перекиси водорода, происходит образование, вступающего в реакцию с супероксидным радикалом, образующим внутреннюю перекись (диоксид), который приводит к образованию возбужденной молекулы натриевой соли гематопорферина препарата «Фотогем». Переход этой молекулы в основное первоначальное состояние сопровождается излучением квантом света. Перексид водорода основной участник образования свободных радикалов, постоянно в небольших количествах образуется в организме человека, это относительно безобидное соединение, но в присутствии ионов металлов переменной валентности железа, меди, марганца и хрома или геминовых соединений из пероксида водорода Н2О2 образуется разрушительный гидроксильный радикал JOH, вызывающий мутации, и инактивацию ферментов и повреждения биологических мембран онкологических клеток. Гидроксильная группа ферментов вызывает активацию молекул, и активно вступает с ним в химическую реакцию, что приводит к яркому свечению биологических опухолевых тканей.
Некоторые клетки организма гранулоциты и моноциты в крови, и тканевые макрофаги, в борьбе с чужеродными клетками выделяют активные формы кислорода, содержащихся в супероксидных радикалах, пероксида водорода Н2O2, и радикала гидроксила JOН в этом случаи наблюдается слабая хемилюминесценция, которая усиливается многократно в присутствии ЯК и натриевой соли гематопорферина препарата «Фотогем». Эти эффекты также многократно усиливаются, при действии на кровеносные сосуды и клетки, кратковременных электрических импульсов, вызывающих увеличение проницаемости клеточных мембран - ритикуломов и стимуляцию выделения митохондриями клеток активных форм кислорода, приводящих к яркому свечению биологических опухолевых тканей.
При помещении в переменное электромагнитное поле высокой напряженности и частоты различных биологических тел, они начинают так же испускать характерное сияние различной интенсивности и цветов, по которому можно судить о свойствах изучаемого объекта. Метод «высокочастотного фотографирования» (эффект Кирлиан, кирлианография в честь изобретателя В.Х. Кирлиан) получил в настоящее время широкую известность в России и за рубежом как метод экспериментальных исследований электромагнитных полей и биоэнергетических взаимодействий. Но наибольший научно-практический интерес представляют исследования свечения биологических объектов в переменном электромагнитном поле высокой частоты. объясняемых фотоэлектромагнитным эффектом фотоволнового излучения и люминисценцией биологических объектов.
В соответствии с современными представлениями водные растворы щелочей и кислот в организме человека рассматривается как ассоциированная жидкость, состоящая из отдельных ассоциированных элементов - нейтральных кластеров и кластерных ионов общей формулы (Н2O)n, [(H2O)n]+, [(H2O)n]-, [(NO2)n] [(H2O2)n], [(NaO2)n] [(СlO2)n], [(СO2)n] и т.д. где количество связанных в водородные связи молекул воды может в n раз достигать, по мнению некоторых авторов под действием ВЧ и СВЧ энергии сотен и даже тысяч единиц. Эти эффекты соответственно изменяют электропроводность и биофотолюминисценцию биологических тканей. Изменение положения одного структурного элемента (молекулы воды) под действием любого внешнего фактора или изменения ориентации окружающих соседних молекул воды в клетках обеспечивает высокую чувствительность всей информационной системы воды к различным внешним воздействиям (электромагнитные, тепловые, звуковые поля, биовоздействие и др.). Кроме этого, в водных кластерах за счет взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (H+) по эстафетному механизму, приводящие к делокализации протона в пределах кластера, обеспечивающих выделение синглетного кислорода с характерным ярким свечением, убивающим раковые клетки. Это свойство объясняет чрезвычайно лабильный, подвижный характер взаимодействия кластеров друг с другом.
Структурированное состояние водных растворов является чувствительным датчиком различных полей - электромагнитных, акустических, энерго-информационных и др. Кроме этого водные растворы, различных химических элементов, является источником сверхслабого и слабого переменного электромагнитного излучения. В этом случае может произойти индукция внешнего электромагнитного поля вызывающая резонансные эффекты совмещения (суперпозиции) внешних электромагнитных полей с собственными полями в биологических объектах при фотоволновом излучении, способных изменять структурно-информационные характеристики биологических объектов, на 80-90% состоящих из растворов воды с различными химическими примесями и вызывать их фотолюминисценцию.
Под действием электромагнитного поля высокой частоты в биологических объектах и водных растворах различных химических веществ, происходит возбуждение, поляризация и ионизация молекул N2, Н2, O2 и СO2. В результате образуется ионизированный газ с отделенными электронами, обладающими отрицательными зарядами, создающими электропроводящую среду для формирования коронного разряда в биологических объектах различных цветов, которые в зависимости от электропроводящих свойств объекта насыщенного различными химическими растворами могут окрашивать корону свечения в различные цветовые гаммы. Форма короны свечения, ее плотность, яркость и поверхностное распределение определяются, в основном, электромагнитными параметрами объекта.
Некоторые клетки организма гранулоциты и моноциты в крови, и тканевые макрофаги, в борьбе с чужеродными клетками выделяют активные формы синглетного кислорода, содержащихся в супероксидных радикалах, перексида водорода Н2O2, и радикала гидроксила JOH в этом случаи наблюдается слабая хемилюминисенция, которая усиливается многократно в этом случаи наблюдается слабая хемилюминисенция, которая усиливается многократно в присутствии Д-АК и АК при ВЧ и СВЧ облучении. Эти эффекты также многократно усиливаются, при действии на кровеносные сосуды и клетки, кратковременных электрических импульсов, вызывающих увеличение проницаемости клеточных мембран - ритикуломов и стимуляцию выделения метахондриями клеток активных форм кислорода.
Этот эффект воздействия электрических импульсов в начале XIX века успешно демонстрировал публике Никола Тесла, при облучении импульсной высокочастотной энергией при открытой антенне, высокочастотного генератора, сосудов с жидкостями обладающими способностью излучать свет и люминесцентных ламп, которые без подсоединения к электрическим проводам светились, ярким светом в руках Николы Тесла, которыми он еще и жонглировал. Это вызывало неподдельный восторг у зрителей, при этом необъяснимым тогда природой явлением, который знал только Никола Тесла. Эти факторы в биологии получили название собирательных стимулов люминесценции изменяющих состояние фагоцитов крови и тканей и их способности увеличивать выделения активных форм кислорода, и соответственно защитных функций клеток.
В онкологических клетках аэробное дыхание отсутствует в митахондриях и заменено на гликолиз. Натриевая соль гематопорферина препарата "Фотогем" при поступлении в онкоклетку ингибирует гликолиз, но не в силах перевести ее на путь нормальной аэробности. Возможно, это связано с конкурентным присутствием глюкозы. Для полного отключения гликолиса в опухолевых клетках необходимо полностью исключить доступ глюкозы или чтобы в субстрате преобладала натриевая соль гематопорферина препарата "Фотогем" над глюкозой. У здоровых клеток в малых количествах в цитазоле она проявляет защитные антиоксидантные свойства. В онкологических клетках, при ее переизбытке, он стимулирует процессы окисления, которые при их переизбытке, оказывают токсическое действие на онкоклетки.
Можно утверждать, что эффект был бы выше, если бы в основу было положено лечение натриевой соли гематопорферина препарата "Фотогем" на фоне полного перекрытия поступления углеводов - глюкозы, как конкурентов натриевой соли гематопорферина препарата "Фотогем" в онкоклетках. Для этого по нашему мнению необходимо перевести человека на безуглеводную диету в течение 3-х дней, для полного отсутствия в это время в питании человека углеводов, которые в желудочно-кишечном тракте превращаются в глюкозу, крайне необходимую для питания онкоклеток. При таком введении онкоклеток в искусственное глюкозное "голодание" затем человеку необходимо ввести высокие разовые дозы 2-3 мг/кг массы тела натриевой соли гематопорферина препарата "Фотогем". Необходимое количество препарата из расчета максимально допустимой разовой дозы натриевой соли гематопорферина препарата "Фотогем", не превышающей 2-3 мг/кг."Голодная" опухоль максимально насыщается янтарной кислотой и натриевыми солями гематопорферина, стимулирует образование перекиси водорода, под действием ВЧ и СВЧ нагрева, в достаточно большом количестве в межтканевой и межклеточных жидкостей. Именно эти химические соединения образуется в процессе взаимодействия витамина В9 и внутренней среды организма. Перекись является фактором или гормоном, стимулирующим механизмы самоуничтожения и гибели онкоклеток. Образование достаточных доз перекиси водорода вокруг и внутри онкоклеток и их апоптоз возможен только при достаточно большом количестве приема янтарной кислоты. В этих условиях ЯК может проявлять себя как антиоксидант или прооксидант, т.е. окислитель, в том числе проявлять разрушительное, а не созидательное свойство онкоклеток. Это очень важно в энергетике клеток. Поэтому янтарная кислота и натриевые соли гематопорферина можно обозначить как переключатель метаболизма, который ускоряет и оптимизирует аэробной энергетический обмен в нормальных клетках, стимулирует тканевое дыхание и образование АТФ. В онкологических клетках аэробное дыхание отсутствует в митохондриях и заменено на гликолиз. ЯК при поступлении в онкоклетку ингибирует гликолиз, но не в силах полностью перевести ее на путь нормальной аэробности. Возможно, это связано с конкурентным присутствием глюкозы. Для полного отключения гликолиза в опухолевых клетках необходимо полностью исключить доступ глюкозы или чтобы в субстрате преобладала янтарная кислота и натриевые соли гематопорферина над глюкозой и под действием электромагнитного поля ВЧ и СВЧ вызывающих их нагрев, с большим выделением перекисей водорода и образованием люминола, основных активаторов гибели опухолевых клеток. У здоровых клеток ЯК и АЛК в малых количествах в цитазоле она проявляет защитные антиоксидантные свойства. В онкологических клетках, при их переизбытке, стимулируются процессы окисления, с образованием перекиси водорода и липоперекисей, оказывающие стабильное токсическое действие на онкоклетки. При поступление натриевой соли гематопорферина препарата "Фотогем" в кровяностные сосуды опухоли, имеющие большую разветвленную сеть с тонкими переферийными сосудами и малой скоростью движения крови в них, ток крови в этих сосудах опухолевых тканей еще больше уменьшается при их нагревание ВЧ и СВЧ энергией, что, еще более эффективно, приводит к свертыванию крови в сосудах опухолевых тканей, не позволяя им охлаждаться, в виду отсутствия замкнутой системы кровообращения. Это прямое цитотоксическое воздействие на опухолевые клетки, нарушающее их кровоснабжение, за счет повреждения эндотелия кровеносных сосудов опухолевой ткани, за счет гипертермического эффекта и цитокиновых реакций, при этом происходит активизация макрофогов, лейкоцитов и лимфоцитов, приводящих к некрозу опухоли. В основных органах человека, богатыми кровеносными сосудами, замкнутыми в основную систему кровообращения, происходит охлаждение пограничных здоровых тканей, подверженных ВЧ и СВЧ гипертермии.
Янтарная кислота и натриевые соли гематопорферина, активно импортируется в эндоплазматические ретикулы (ЭПР) (Эндоплазматическую сеть, состоящую из мембран и задающую направленность, и активный транспорт субстратов против градиентов) клеток с помощь транспортеров глюкозы. Следует отметить, что энергетические процессы в онкоклетках переносятся из метахондрий в эндоплазматический ретикул. Именно здесь в ЭПР и накапливается сукцинаты и натриевые соли гематопорферина и среда онкоклетки в этом месте существенно отличается от обычных клеток, они просто здесь перевосстановленны, очевидно, вынуждено из янтарной кислоты восстановиться до сукцинатов, а натриевой соли гематопорферина до гиминов. С этого момента начинается разрушительное действие ЯК и натриевые соли гематопорферина на онкоклетку. "Голодная" онкоклетка в это время может многократно накапливать в себе сукцинаты и натриевые соли гематопорферина, т.к. воспринимает их на своих мембранных транспортерах за глюкозу. Поскольку, глюкозопотребляющих рецепторов в онколетке многократно больше, чем у здоровых, хотя транспортные системы поставки глюкозы и сукцинаты и натриевые соли гематопорферина в клетки общие это и является для онкоклеток "Троянским конем". Таким образом, можно очень просто обмануть онкоклетки и закачать в них янтарную кислоту и натриевые соли гематопорферина, с решением проблемы подачи мегадоз ЯК и натриевые соли гематопорферина и тогда под фотоэлектромагнитным воздействием ВЧ и СВЧ энергии феномен гибели онкоклеток будет многократно усилен.
"Голодная" опухоль максимально насыщается натриевой солью гематопорферина препарата "Фотогем", в 8-10 раз выше, чем в обычных здоровых тканях, в достаточно большом количестве на мембранах и межтканевой жидкости. Для полного отключения гликолиза в опухолевых клетках необходимо полностью исключить доступ глюкозы или чтобы в субстрате преобладала, ЯК и натриевой соли гематопорферина над глюкозой. У здоровых клеток в малых количествах в цитазоле она проявляет защитные антиоксидантные свойства. В онкологических клетках, при ее переизбытке, она стимулирует процессы окисления, с образованием внутренних перекисей и липоперекисей, которые при их переизбытке, под фотоэлектромагнитным воздействием ВЧ СВЧ энергии оказывают токсическое действие на онкоклетки. натриевыми солями гематопорферина и янтарной кислотой,, стимулирует образование макрофагов и Т- лимфоцитов под действием фермента феррахелатазы, в достаточно большом количестве на мембранах и межтканевой жидкости. Именно это химическое соединение образуется в процессе взаимодействия натриевых солей гематопорферина и янтарной кислоты во внутренней среде организма. Под действием окислителя радикалов липоперикисей и внутренних перекисей, значительно усиленным температурным действием и дополнительным действием, электромагнитных полей ВЧ и СВЧ происходит образование радикала левулина, который затем вступает в реакцию с супероксидным радикалом, образуя внутреннюю перекись (диоксид), и перекись водорода Н2O2 при ВЧ и СВЧ гипертермическом разложении, ЯК витамина В9. В этом случаи происходит многократное усиление в образовании возбужденных молекул активного кислорода Переход этой молекулы из возбужденного в основное состояние сопровождается испусканием квантов света, и сильным свечением. В результате этих химических реакций связанных с высоким выделением активных форм кислорода и органическими свободными радикалами, под действием фотоэлектромагнитной волновой ВЧ и СВЧ энергии вызывающих люминисценцию выжигаются онкологические клетки.
Метод "избирательного голодания" онкоклеток поверхностных и глубоко расположенных в теле человека, путем последующего введения или приема различных электросенсосибилизаторов, для избирательного максимального насыщения опухолевых клеток высокоэлектропроводящими электронно-ионными растворами сенсосибилизаторов при максимальном разделении электрофизических свойств, опухолевых и здоровых тканей с последующим избирательным воздействием на них электромагнитными полями высокой частоты в комплексе с другими методами - это самое актуальное научно- практическое направление в борьбе с онкологическими заболеваниями
Изучение биофизического и биохимического механизмов комплексного воздействия ВЧ и СВЧ энергии на онкоклетки насыщенные ЯК и натриевой соли гематопорферина предполагают три концепции гибели онкоклеток, одна предполагает значимость ЯК, другая натриевой соли гематопорферина а третья фотоэлектромагнитное воздействие ВЧ и СВЧ энергии на опухолевые ткани насыщенные ЯК и натриевой соли гематопорферина, что в этом случае в результате комплексного воздействия трех факторов приводит к явной гибели онкоклеток.
Под действием ферментов, в организме человека, натриевой соли гематопорферина препарата "Фотогем" определяется внутриклеточным концентрацией (уровнем накопления сенсибилизатора) его локализацией в клетке и фотохимической люминисцентной активностью (квантовым выходом генерации синглетного кислорода или свободных радикалов), обеспечивая флюоресцентный контраст опухоли и увеличение ее проводимости, относительно окружающих здоровых биологических тканей
Ряд исследователей утверждают, что минимолярное концентрация ЯК и натриевой соли гематопорферина, являющихся прооксидантами (ликоокисляющиеся соединения, нейтрализующие свободные радикалы), в крови и тканях убивают раковые клетки, не затрагивая здоровых, за счет вызываемого локального оксидативного стресса-процесса повреждения, в результате окисления, клеточной ДНК и истощения аденозинтрифосфата (АТФ)-источника энергии клетки. Внутренние перекиси и другие липоперекиси в числе других сопутствующих ей молекул, агрессивного воздействия, вызывает сбой функционирований определенного фермента, ответственного за "питание" клеток злокачественных опухолей. ЯК и натриевые соли гематопорферина препарата «Фотогем» могут многократно накапливаться в цитозоле клеток.
Опухолевые клетки накапливают, в отличие от нормальных, значительное количество гомоцистеинтеолактона (HTL). До вставки в белок гомоцистеина, он становиться биологическим браком, в виде (HTL). В обычных клетках гомоцистеина мало, поэтому и теолактон из него практически не образуется, но превращение в раковую клетку требует значительной активизации метилирования, что в свою очередь запускает специальный биохимический цикл, в котором учувствует гомоцистеин. В этом случае белок, синтезирующая машина раковой клетки, работает на полную мощность, поэтому чаще ошибается. Тьюэ обнаружил, что взаимодействие с кислотами, это вещество образует высокотоксичный 3-меркаптоппропионовый альдегид (MPА).
Когда в раковую клетку, насыщенную HTL, попадают органические кислоты и натриевые соли гематопорферина препарата "Фотогем" образовывается МРА, который под действием высокочастотной энергии и убивает раковые клетки. Разрушая раковые клетки, МРА ликвидирует источник своего образования, поэтому нормальные клетки под действием натриевой соли гематопорферина от него сильно не страдают. В этом случае можно утверждать, что при лечении рака натриевыми солями гематопорферина, ЯК и ВЧ и СВЧ энергией в крови, и в различных органах человека, будет наблюдаться 100% лечебный эффект.
Основная задача для исследователей, заключается в том, чтобы как можно больше усилить эффект максимального избирательного поглощения раковыми клетками натриевая соль гематопорферина препарата "Фотогем" с одновременным последующим высокочастотным облучением онкоклеток с целью повышения эффективности лечения до 100%.. Уже доказано, что такой эффект возможен на примере обеззараживания биологических объектов от вирусных, грибных и бактериальных инфекций ВЧ и СВЧ энергией.
Многочисленные исследования проведенные нами в Красноярском ГАУ и ВИЗРе г. Санкт-Петербурга подтвердили 100% эффективность обеззараживания семян овощных культур и живых биообъектов, насыщенных высокопроводяшими электронно-ионными растворами микроэлементов ВЧ и СВЧ энергией против вирусных инфекций, имеющих похожее происхождение с онкоклетками.
А.с. №563938 СССР. Способ обработки семян сельскохозяйственных культур / Цугленок Н. В., Цугленок Г.И. - Опубл. 16.03.1977, Бюл. №25. Свидетельство СССР №950214. Способ предпосевной обработки семян / Цугленок Н.В. - Зарегистрировано в реестре 14.04.1982. 45. Интенсификация тепловых процессов подготовки семян к посеву энергией ВЧ и СВЧ: методические рекомендации / Н.В. Цугленок. - М.:Агропромиздат, 1989. Методические рекомендации по использованию энергии ВЧ и СВЧ в процессах подготовки семян к посеву / Н.В. Цугленок. - М.: РЖГосагропром СССР, 1989. - 19 с. Пути обеззараживания семян томатов против вирусной инфекции / Ю.И. Власов [и др.] // Всероссийский НИИ защиты растений (ВИЗР). - 1989. - Т. 71. - С. 49 - 54. Способ обеззараживания яичного порошка. Номер патента: 1734632. Опубликовано: 23.05.1992 г. Авторы: Цугленок Н.В., Колмаков Ю.В. МПК: А23в 5/02. Способ приготовления среды для разбавления спермы производителя Номер патента: 1769422. Опубликовано: 27.06.1995. Авторы: Цугленок, Осташко, Шахматов, Силантьева, Концедал.
Самое главное, что данный метод безвреден, не обладает особыми побочными эффектами для биологических объектов.
Доказано, что онковирусы под действием канцерогенов встраиваются в здоровую клетку и со временем растворяются в ней превращая ее в онкоклетку. Любые вирусы убиваются температурой или кислотой. Другие методы против онковирусов и онкоклеток в основном бессильны их просто нет. Особого внимания заслуживает в этом направлении новый фотодинамический метод использования лазерных фотосенсибилизаторов. Но малая глубина проникновения электромагнитной волны лазерных излучателей не позволяет выжигать глубокорасположенные злокачественные опухоли.
Необходимо отметить еще один очень важный биофизический процесс-увеличение удельной электропроводности вирусов состоящих из белковой оболочки наполненной смесью нуклеиновых кислот и аналогично опухолевых тканей, наполненных растворами межклеточной жидкости определяемых значительной концентрацией ионов и электронов и их подвижностью в сравнении со здоровыми тканями.. При повышении температуры при ВЧ и СВЧ нагреве в опухолевых тканях подвижность ионов и электронов значительно возрастает, увеличивая их электропроводность и диэлектрические потери, что еще больше усиливает их избирательный нагрев и апоптоз опухолевых тканей.
Этот эффект излечения объясняется тем, что в это время от 0,5 до 6 часов в нормальных клетках живых биологических объектах янтарная кислота и натриевые соли гематопорферина, быстро превращаются в сукцинаты и двухвалентный гем железа, под действием фермента феррохелатазы, сохраняя при этом высокий контраст максимального содержания янтарной кислоты и натриевых солейгематопорферина, в опухолевых клетках в 8-10 раз выше чем в здоровых, и их дальнейшего превращения в ионные соли сукцинатовв опухоли, что значительно увеличивает ее электрическую проводимость со значительным увеличением диэлектрических свойств опухолей, относительно окружающих здоровых биологических тканей, достигающих этой разницы во много раз.
При ВЧ и СВЧ нагреве янтарная кислота и натриевые соли гематопорферина, в онкоклетках преобразуется в сукцинаты, и натриевые соли гематопорферина под действием температуры, с образованием перекиси водорода и других липоперекисей. Чем больше янтарной кислоты и натриевых солей гематопорферина в онкоклетке, тем больше образовывается в ней липоперекиси и перекиси водорода, в сравнении со здоровыми клетками. Избыток перекиси водорода и липоперекиси запускает фотоэлектрический механизм гибели раковых клеток. Процесс гибели онкоклеток инициируется ВЧ и СВЧ полем путем быстрого нагрева и фотоэлектрической гипертермии онкоклеток нагретых до 48°С, насыщенных янтарной кислотой и натриевыми солями гематопорферина их быстрого окислительного распада под действием температуры с большим выделением перекиси водорода и липоперекисей вызванных фотоэлектромагнитной гипертермии с большим выделением активного кислорода, что является губительным для онкоклеток.
У здоровых клеток, янтарная кислота и натриевые соли гематопорферина, поступая в ЭПР не будет восстанавливаться до сукцинатов, т.к. рН и ОВП (Окислительно-восстановительный потенциал) для этого не подходят, а ЯК для них будет практически безвредна и трансформироваться на глюкозном конвейере. В онкоклетках среда другая, перевосстановленная в янтарную кислоту и натриевые соли гематопорферина, которые стараются по максимуму в онкоклетке все сжечь и уничтожить, за счет перекисного окисления липидов (ПОЛ). В этом случае происходят существенные разрушения с образованием токсичных липоперекисей, повреждающих клеточные мембраны, различных органел, мутацией нуклеиновых кислот, инокцивации ферментов, разрушением питательных веществ и гибель клеток. В данном случае гибель клеток идет не по пути апоптоза, а полного некроза.
Наиболее полное накопление янтарной кислоты 0,5-2,5 часа и натриевых солей гематопорферина, в опухоли происходит в течение 48-72 часов после их приема. Затем уровень янтарной кислоты и натриевой соли гематопорферина, соответственно в опухоли постепенно снижается через 2,5 и 72 часа, достигая исходных значений, после приема препарата «Фотогем».
Натриевые солигематопорферина принимают внутривенно (капельно) с 30 минутной инфузией в полузатемненном помещении из расчета дозировки 2-3 мг/кг массы тела, с предварительным разведением в 40 мл 9% растворе натрий хлора стерильного физиологического раствора. Препарат хранят в темном месте, за 24 часа до применения. Необходимое количество препарата из расчета допустимой разовой мегадозы натриевых солей гематопорферина, перед ВЧ и СВЧ облучением должно составлять 3,1 мг/кг массы тела и янтарной кислоты до 3000 мг перорально за 2,5 часа до проведения ВЧ и СВЧ гипертермии опухолевых тканей энергией волнового излучения, со скоростью нагрева 0.081°С/сек до температуры 52°С, в результате которой опухоли денатурируют и в последствии через 2-4 недели продукты распада опухолевых клеток выводятся организмом самостоятельно, естественным путем, исключая оперативное вмешательство в организм человека.
При дальнейшей одновременной ВЧ и СВЧ гипертермии опухолевых клеток, насыщенных янтарной кислотой и натриевыми солями гематопорферина, в течении 190 сек волновым излучением ВЧ и СВЧ полей, с разрешенной частотой колебаний электромагнитного поля f=433 92 мГц, f=915 мГц или 2450 мГц, со скоростью нагрева 0.081°С/сек до конечной температуры нагрева опухолевых клеток 52°С они разрушаются.
Эта предлагаемая технология лечения позволяет одновременное проведении флюоресцентной диагностики для уточнения границы опухолей и одновременной фотодинамической гипертермии опухолевых клеток энергией волнового излучения с разложением янтарной кислоты и натриевых солей гематопорферина в перекись водорода и гидроксиды позволяющие эффективно выявлять, и разрушать, таким образом, даже неопределяемые опухолевые образования, находящиеся в глубоких слоях биологического объекта.
Биофизический смысл данного метода заключается в избирательном максимальном насыщении и накоплении в опухолевых клетках высокоэлектропроводящих электронно-ионных растворов электрофотосенсибилизаторов и в максимальном разделении электрофизических свойств, опухолевых и здоровых тканей янтарной кислотой и натриевыми солями гематопорферина и существенным увеличением разницы электрических потенциалов опухолевых и здоровых клеток в межклеточной среде и на стенках ретикулума. Ретикулум - это электрический контур, где очевидно по одной стороне мембраны скапливаются отрицательные заряды, а по противоположной положительные, поэтому ретикулум является электротранспортером глюкозы и других питательных веществ раковых и здоровых клеток. Следовательно, ретикулум это электрическая сеть, заряженная отрицательными и положительными зарядами. Баланс этих зарядов строго контролируется активностью митохондрий и энергетическими операторными структурами на внешней стороне клетке - на цилиях. Эти белки при определенных ситуациях в окружающей среде клетки, разряжаясь могут давать активный сигнал на ретикулум и митохондрии. При этом меняется баланс существующий зарядов на одной из сторон ретикулума. Это ведет к сдвигу в химических процессах, запускаются многие новые реакции. Одна сторона мембраны ретикулума подключена к одному типу входа в митохондрии, а противоположная - к выходу из нее. Таким образом, создается единая электрическая цепь двойного активного управления энергетикой митохондрий. Напряженность электрического поля на ретикулуме держит под контролем работу митохондрий. В этом случае митохондрии затягивают заряды, скопившиеся на одной стороне мембраны ретикулума и выводят противоположные заряды на другую сторону мембраны ретикулума. Заряды таким образом не смешиваются и разобщены. Это важно для того, чтобы в клетках проходил ионный обмен. Внешне ретикулум похож на обкладки конденсатора, чем больше слоев обкладок, тем больше его электроемкость. Между прокладками находится полупроводник, насыщенный янтарной кислотой и натриевыми солями гематопорферина. Этот конденсатор, т.е. мощную густую сеть обкладок-мембран опухоли очень хорошо видно через микроскоп. В опухолевых клетках количество мембран значительно выше, чем в здоровых. Соответственно плотность опухолевых тканей и емкость биологического электрического конденсатора значительно выше здоровых тканей. При зарядке на одной пластине такого конденсатора будут собираться отрицательно заряженные частицы-электроны, а на другой - ионы, положительно заряженные частицы. Такой заряженный конденсатор может превратиться в источник тока, если его отключить. Любые колебания внешнего поля на внешней стороне мембраны клеток сказывается на состоянии ретикулума, который сбрасывается заряд на митохондрии, управляя их активностью. Митохондрии, в свою очередь, настроены так, что никогда не позволяют снизиться зарядам на ретикулуми ниже критического уровня. В онкологических клетках заряды внутри митохондрий резко снижаются и вся система регулировки нарушается. Это главный стержень управления всей электрохимической энергетикой клетки. Поэтому химические процессы всегда вторичны и не являются основными. В результате электрохимической энергетике клетки в ретикулуме имеется круговорот веществ, где насосом являются митохондрии. При недостатке этого круговорота между ретикулуми и метахондриями за счет электроосмоса идет подсос веществ извне через наружную мембрану и открытие на ней шлюзов и натриевой помпы. Среда на мембранах ретикулума и щелочном жидком субстрате в опухолевых клетках перевосстанавливается, в связи с избытком минусовых зарядов. Это и определяет химическое равновесие по рН, сопряженных буферных химических элетропарных веществ, когда буферная система разряжается или восстанавливается. Регулируют эти процессы заряды на обкладках ретикулума и митохондриях. Химические процессы, в этом случае, просто исполнители, посредники. Наружная сторона митохондрий обеспечивает напряжение зависимого анионного канала. Этот механизм поддержания напряжения называется VDAC, задает условия работе ретикулума. Именно здесь на наружной стороне мембраны находится фермент Гексокиназа II, опухолевых и здоровых клеток обеспечивающий утилизацию глюкозы. Максимальное разделение, рассоединение работы наружной митохондриальной мембраны (VDAC) и Гексокиназа II обеспечивает индукцию апоптоза опухолевых клеток.
Митохондрия работает путем затягивания из ретикулума в себя как электромагнитный насос, необходимое питание под большим напряжением. Без этого эффекта высочайшего напряжения затягивания внутрь питательных веществ, в клетку не будет. В этот процесс саморегулировки обмена включены так называемые цилии и конформационные белки, работающие как единый замкнутый энергетический контур. У онкоклеток, в отличие от нормальных клеток, нет цилий. Этот, наиболее поражаемый, энергетический уровень в онкоклетках отсутствует. Единственный правильный путь это максимальное разделение свойств онкологических и здоровых клеток, и нахождение слабых мест в энергетике онкоклеток, для их полного уничтожения. Митохондрии задают степень заряженности ионным насосам на внешней мембране клетки и стартерным структурам, удерживающим заряды на ретикулуме. Эти сенсорные структуры могут наиболее быстро повреждаться и выгорать, поскольку митохондрии это наиболее эффективные электрохимические топки. В случае отключения митохондрий градиент напряжения клетки резко уменьшается и процессы идут в онкоклетках на гораздо большей площади, что позволяет им сжигать много глюкозы и других субстратов типа кетонов. Высокой степени сгорания глюкозы здесь нет. Онкоклетка берет не качеством, поскольку все сконцентрировано на малой площади митохондрий, а их большем количестве, намного большем, чем в здоровых клетках и соответственно при высоких потенциалах на обкладках конденсатора, т.е. большим количеством площади окисления-сгорания на стенках сети ретикулума. Поэтому кислород такой клетке не нужен, но при этом потребление глюкозы будет, гораздо большем, чем в здоровых тканях.
Мембраны ретикулумы и ядра клетки одни и те же, причем ретикулум как конденсатор законтурен на ядро, только одной своей стороной-электроном и сбрасывает электроны в ядро. Таким образом, заряд ретикулум обеспечивает и заряд внутри ядра клетки. Ядро клетки насыщено электрофильными белками, которые обеспечивают концентрацию сверхмощного электростатического заряда внутри ядра.
Электропроводность раковых клеток обусловлена наличием в них подвижных заряженных электронов на ретикулумах и в ядре клетки и ионов в митохондриях клетки. Величина электропроводности зависит от количества электрических зарядов и их подвижности. Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которая в различных тканях разная, в связи с чем, биологические объекты обладают свойствами проводников, полупроводников и диэлектриков. В межклеточной жидкости, насыщенной янтарной и натриевыми солями гематопорферина содержится максимальное содержание ионов
Основная задача для исследователей, остается в том, чтобы как можно больше усилить эффект максимально избирательного поглощения ионов натриевой соли гематопорферина препарата "Фотогем" раковыми клетками и повысить эффективность лечения, за счет увеличения электропроводности метахондрий и ретикулумам раковых клеток
Удельная электропроводность тканей высока и составляет более 1 См⋅м-1. Крупные белковые молекулы имеют более низкую электропроводность, до 0,003 См⋅м-1. Внутриклеточные мембраны имеют проводимость ниже (1-3⋅10-5) См⋅м-1. Наибольшие величины электропроводности в организме человека имеют жидкие среды (кровь, лимфа, желчь, моча, спинно-мозговая жидкость и онкологические клетки (0,6-2,0 См⋅м-1) и мышечная ткань (0,2 См⋅м-1). Самую низкую удельную электропроводность имеет костная, жировая и нервная ткани, в особенности грубоволокнистые соединительные ткани и ткани зубной эмали (10-3-10-6См⋅м-1).
Значительно более сложный характер носит электропроводность клеток и тканей при ВЧ и СВЧ нагреве. В этом случае биологические объекты обладают как проводимостью, так и емкостью, характеризующую диэлектрической проницаемостью. Частотная зависимость электрических параметров и поглощение энергии электромагнитного поля определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках и содержанием в них свободной воды. Все эти факторы приводят к изменению электропроводности биологических объектов. Особенно значимым фактором для метаболизма онкологических клеток является содержание в них глюкозы или ее заменителей, в данном случае янтарной кислоты и натриевых солей гематопорферина. Если в организме человека есть злокачественные опухоли и метастазы 3 и 4 стадии, которые активно и интенсивно усваивают глюкозу или ее заменитель -янтарная кислота и натриевые соли гематопорферина, они преобразовываются в АТФ в раковых клетках значительно меньше, чем в здоровых, в результате чего, раковые клетки сильно разогреваются и повышают температуру тела человека на 1-2°С. Данный физиологический механизм индуцирует повышение температуры опухолевых и близлежащих к ним нормальных тканей. Суммарный подъем температуры в теле человека, в настоящее время, регистрируется СВЧ - радиометром позволяющим с точностью 0.3°С контролировать температуру глубоко расположенных опухолевых и здоровых тканей в теле человека.
Данный процесс частично был изучен нами при воздействии на биологический объект с опухолевыми тканями, которые подвергались ежедневному комплексному воздействию постоянного магнитного поля с интенсивностью 25 мкТл и переменного магнитного поля частотой 3,1 Гц и интенсивностью 5 мкТл, экспозиции 60 минут в день единовременно, в течение 5 дней. Предлагаемый способ воздействия постоянного и переменного воздействия на ионный обмен в митохондриях клеток и на отрицательно заряженные электроны на ретикулумах и ядрах клеток позволял осуществлять индукцию гибели опухолевых клеток при помощи магнитотерапии, что на 40%, по сравнению с контролем, освобождало биологические объекты от опухолевых клеток (патент №2307681, авторы: Цугленок Н.В., Сергеева Е.Ю., Климацкая Л.Г. RU). Поэтому данное направление использования магнитных и электромагнитных полей и их воздействие на энергетику опухолевых клеток заслуживают особого внимания, подтверждается исследователями из Южной Кореи, которые предложили использовать для уничтожения опухолевых клеток мощное магнитное поле. В мощном магнитном поле опухоль начинает убивать сама себя.
Известен способ разрушения раковых клеток при СВЧ - облучения (Патент РФ №2174021, МПК A61N 5/02) перед воздействием гипертермии осуществляют воздействие на опухоль СВЧ излучением с длиной волны 1,3-2 см и выявляют значение резонансной частоты поглощение опухолями. После чего осуществляют аналогичное воздействие на пограничное с опухолью здоровые ткани и выявляют значение резонансной частоты поглощение этих здоровых тканей. Одновременно с гипертермией осуществляют контроль значений резонансных частот поглощение энергии опухолями и здоровыми тканями и при сближении значений резонансных частот поглощение энергии опухолями и здоровыми тканями судят об эффективности лечения. Данный способ позволяет повысить эффективность лечения опухоли методом СВЧ гипотермии при их нагреве до 43°С.
Основным недостатком данного способа является небольшая разница в нагреве опухолевых и здоровых тканей.
Известен способ деструкции раковых клеток опухолевых тканей (Патент РФ №2106159 МПК A61N 5/02, A61N 5/6) сущность изобретения включает внедрение в область локализации опухоли ферромагнитных частиц, с последующим индукционным локальным нагревом, в диапазоне температур от 42°С до 45°С, в течение времени, определяемая видом опухоли, ее размерами, локализацией и типом ферромагнитных частиц, выбранных для индукционного нагрева, при этом нагрев проводят только в моменты уменьшения кровенаполнения ткани, т.е. в моменты выдоха и диастопы сердца пациента. Диапазон нагрева контролируют по СВЧ глубинному термометру, а нагрев ведут автоматически, с помощью компьютера, в режиме биоправления, по алгоритмам математической модели колебаний теплопроводности и теплоемкости ткани, гистерезиса нагрева и теплоотвода.
Основными недостатками данного способа является малая локализация магнитных частиц в опухоли и трудности поддержания фиксированной температуры в различных пространственных областях опухоли, что не приводит к полному излечению пациентов.
Известен способ разрушения раковых опухолей при использовании магнитных наночастиц (Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Andreas Jordan, Regina Scholz, Klaus Maier-Hau,Manfred Johannsen, Peter Wust, Jacek Nadobny, Hermann Schirra, Helmut Schmidt, SerdarDeger, Stefan Loening, Wolfgang Lanksch, Roland Felix. Journal of Magnetis mand Magnetic Materials 225 (2001) 118-126).
Разрушение раковых клеток основано на термолизе магнитных наночастиц, вводимых в опухоль, и индукционного их нагрева в переменном магнитном поле на частотах 50-100 кГц.
Однако данный способ не позволяет локально разрушить раковые клетки и требует мощных электромагнитов с токами в десятки кА на относительно высоких частотах. Кроме того, мощные переменные магнитные поля могут оказывать влияние на процессы движения и диффузии ионов через мембраны клеток, а также порождать индукционные переменные электрические поля, влияющие на работу нейронных сетей в организме человека, связанным с нагревом не только магнитных частиц, но и всех клеток, находящихся в области введения магнитных частиц, и сильной пространственной неоднородностью температуры нагрева как внутри опухоли, так и здоровых тканей, повреждая их и не гарантирует к полной гибели опухолевых клеток.
Известен способ близкофокусной рентгенотерапии с суммарной очаговой зоной 100-120 Гр и дистанционной гамма-терапии при лучевом разрушении злокачественных клеток с суммарной очаговой зоной 30-40 Гр (см. Ш.Х. Ганцев. Онкология, М.: Медицинское информационное агенство. 2004, с. 190-204; Stephen J., Withrow Е., MacEwen G. Smalanimalclinicaloncology - 2001, p. 305-308).
Однако данный способ, несмотря на распространенность, обладает следующими недостатками. При лечении некоторых типов злокачественных новообразований, например меланомы, с помощью дистанционной гамма-терапии даже в сочетании с иммунотерапией, как показывает опыт, приводит к 75-90% рецидиву опухолей, а через 2-6 месяцев возникают метастазы.
Известен способ нейрон - захватный селективного разрушения меланомы (см. В.Н. Митин, Н.Г. Козловская, A.M. Арнопольская Нейрон-захватная терапия опухолей ротовой полости у собак. Всероссийский ветеринарный журнал. 2006. №1, с. 9-10).
Способ включает введение в кровь внутривенно L- борфенилаланина, который селективно накапливается в определенной опухоли- меланоме, так как L-фенилаланин является незаменимой аминокислотой, из которой вырабатывается меланин, образующий меланоциты, содержащиеся в клетках меланомы. Таким образом, происходит селективное накопление L-борфенилаланина в клетках меланомы. При облучении пространственной зоны, соизмеримой с опухолью, содержащей L-борфенилаланин, пучком медленных нейронов, получаемых по нейроноводу из ядерного реактора, происходит разрушение клеток меланомы вследствие индуцированного вторичного локального излучения бора.
Однако данный способ обладает следующими недостатками:
1. Радиационное облучение пациентов, которое лишь частично уменьшается при использовании литиевого защитного фартука.
2. Сложная и очень дорогая установка, включающая компактный ядерный реактор, требующий для обслуживания квалифицированных специалистов немедицинского профиля, в частности физиков-ядерщиков.
3. Длительное время облучения пациентов в течение часа при мониторинге сердечно - сосудистой системы.
4. Применение общей анестезии.
Известен способ фотодинамического разрушения опухолей, включающий внутривенное введение фотосенсибилизатора и облучение опухоли непрерывным лазерным излучением с длиной волны, совпадающей с полосой поглощения фотосенсибилизатора (см. Photodynamictherapy / Ed.T.J.Dougherty / J.Clin.LaserMedSurg. 1996, Vol. 14, P 219-348; Патент РФ №2184578, МПК A61N 5/06). Селективный фотодинамический механизм разрушения раковых клеток основан на более высокой плотности (контрастности) накопления фотосенсибилизатора в опухолевых клетках по сравнению со здоровыми клетками, что связано с большой плотностью кровеносных сосудов в опухоли по сравнению со здоровой биотканью.
Однако этот контраст для различных опухолей не превышает двух-трех раз. При поглощении лазерного излучения фотосенсибилизатором молекулы красителя переходят в возбужденное электронное состояние и при столкновение с молекулами кислорода, растворенного в биоткани, переводят его из невозбужденного в возбужденное электронное синглетное состояние, с типичным временем жизни несколько микросекунд. За это время молекулы синглетного кислорода, пройдя характерный путь, соизмеримый с размерами клеток при взаимодействии с плазматической мембраной клетки, повреждают ее, и клетка гибнет вследствие некроза. Таким образом, разрушение клеток происходит лишь во время воздействия лазерного излучения в пространственной области облучения лазерным пучком.
Фотодинамический способ при разрушении раковых клеток имеет ряд недостатков. Используемые в практике фотосенсибилизаторы-фталационины, порфирины, хлорины имеют полосы поглощения фотосенсибилизаторов в ультрафиолетовой или видимой области спектра, и используемые лазеры не могут эффективно проникает на глубину, не превышающую нескольких миллиметров. Кроме того, фотодинамеческий способ обладает малой контрастностью накопления фотосенсибилизаторов в раковых клетках.
Наиболее близкий к заявленному является способ разрушения биоткани, заключающийся во введении в нее этанола с помощью полой игры, отличающийся тем, что вводят 95% этанол в количестве, равном половине объема биоткани, подлежащей разрушению, затем вводят 5 мл 20-30% этанола, после чего проводят нагрев высокочастотным током с одновременным введением 20-30% этанолом в количестве, равном объему биоткани, подлежащей разрушению. Устройство содержит генератор высокочастотного тока с двумя цилиндрическими электродами, расположенными относительно друг друга коаксиально, внутренней в виде полой иглы, через которую в опухоль вводится этанол (Реферат №2006113533 заявки на патент РФ). Недостатком данного способа можно отнести: необоснованность избирательного поглощения этанола раковыми и здоровыми клетками, сложность ввода коаксиального электрода в неоднородные опухоли, для организации равномерного нагрева опухолевых тканей не одинаково расположенных от оголенного конца иглы.
Задачей настоящего изобретения является локальное селективное разрушение злокачественных опухолей, глубоко расположенных в биотканях человека, предварительно избирательно максимально насыщенных в течение 0,5-2,5 часов янтарной кислотой и 72 часа натриевыми солями гематопорферина, облучаемых после 72 часов, максимально насыщенных волновой электромагнитной энергией при одновременном избирательным ВЧ и СВЧ - нагреве опухолей, до температуры 52°С со скоростью нагрева 0.081°С/сек, с целью увеличения выделения в них перекиси водорода, янтарную кислоту вводят за 2,5 часа до облучения, для полного разрушения опухолей фотодинамической гипертермией при минимальном разрушении окружающих здоровых клеток биоткани, за счет контактной теплопередачи от опухолевых к пограничному слою здоровых тканей, нагреваемых при этом до температуры 40°С, после выключения ВЧ и СВЧ энергоподвода. Согласно проведенным исследованиям по ВЧ и СВЧ гипертермии опухолевых тканей, при температуре 52°С граница между зоной некроза и здоровой тканью составляет несколько клеток. Зона разрушения опухолевой ткани включает небольшую зону периферии нормальных здоровых тканей, что исключает движение перерождающих клеток из метастазирования путем их вторичного некроза при контактной теплопередачи от нагретых опухолевых тканей.
Способ инициации гибели опухолевых клеток ВЧ и СВЧ энергией, включающий предварительное насыщение опухолевых клеток растворами натриевой соли гематопорферина и янтарной кислотой, принимаемых внутрь человеком, для их максимального накопления в опухолевых клетках в 8-10 раз выше, чем в здоровых, соответственно в течение 48-72 часов и 0,5-2,5 часа после их приема, отличающийся тем, что в течение 3-х дней до лечения человек переводится на белковую диету, для многократного избирательного накопления в «голодных» опухолевых клетках высокоэлектропроводящих электронно-ионных растворов натриевой соли гематопорферина и янтарной кислоты, многократно увеличивающих электропроводность опухолевых тканей в сравнение со здоровыми, и по истечении 72 часов после приема препарата «Фотогем» и дополнительного приема янтарной кислоты за 2,5 часа до облучения проводится избирательная ВЧ и СВЧ фотоэлектромагнитная гипертермия опухолевых тканей энергией фотоволнового излучения, со скоростью нагрева опухолевых тканей 0.81°С/сек, в течение 190 сек до температуры опухолевых тканей 52°С, при нагреве здоровых тканей не выше 40°С
Одноразовая мегадоза 3,1 мг/кг веса человека натриевой соли гематопорферина препарата «Фотогем» вводится внутривенно и мегадоза 3000 мг янтарной кислоты принимаемая перорально до ВЧ и СВЧ обработки опухолевых тканей и частота ЭМП выбирается в соответствии с глубиной расположения опухолевых тканей и максимальной глубиной проникновения ЭМП в биологические объекты на разрешенных частотах f-13,56 МГц=1100 см. f- 27 МГц=545 см, f-40,68 МГц=370 см, f-433,92 МГц=34,5cм,f-915 МГц=16,5 см и f-2450 МГц=6,1 см.
Физическая природа микроволнового излучения, это физическое поле, движущихся электрических зарядов, в электрическом и магнитном полях, представляющих из себя единое электромагнитное поле (ЭМП), характеризующегося частотой колебания f. Отличие только в частоте, с которой происходят электромагнитные колебания соответствующей длиной волны. Биологическое действие ЭМП на живой организм заключается в поглощение энергии биологическими тканями, характеризующимися биофизическими параметрами - диэлектрический постоянный и проводимостью.
Ткани человеческого организма, в связи с большим содержанием в них воды, следует рассматривать как диэлектрики с потерями. При общем облучении тела, энергия ЭМП проникает на глубину 0,5 длины волны. Интенсивность воздействия, экспозиция и диэлектрические потери и проводимость характеризуют избирательное поглощение ЭМП различными тканями при одной и той же плотности ЭМП излучения.
где, λ- длина волны,
с - скорость распространения электромагнитной волны,
f - частота колебаний электромагнитного поля.
Частота, с которой, происходят, колебания электромагнитного поля в значительной степени влияет на глубину проникновения электромагнитной волны в биологический объект.
Причина заключается в соизмеримости с различными физическими объектами. При f=13,56 МГц, длина волны ЭМП λ=22 м, при f=40,68 МГц, длина волны ЭМП λ=7,4 м, при f=433,92 МГц, длина волны ЭМП λ=69 см, при f=915 МГц, длина волны ЭМП λ=33 см, и при f=2450 МГц, длина волны ЭМП λ=12,2 см. (Таблица 1)
Это определяет выбор оборудования для локальной гипертермии опухолей расположенных на разных глубинах в биологических объектах.
Опухолевые ткани насыщенные натриевыми солями гематопорферинав 8-10 раз превышают ее содержания в здоровых тканях, соответственно, во столько раз отличается и ее электропроводность, т.е. способность опухолевых тканей проводить электрический ток обусловлены наличием в опухолях кислотного электролита, свободных носителей заряда -электрически заряженных частиц, которые под воздействие внешнего электрического поля в толще опухоли, создают ток проводимости.
Еще одним важным параметром электрофизических свойств диэлектрических и полупроводниковых материалов, какими являются опухоли, характеризующимися диэлектрическими потерями. Диэлектрические свойства опухолевых тканей служат для определения электрической удельной мощности затрачиваемой на их нагрев. В справочной литературе для характеристик способности диэлектрика
поглощать энергию переменного электрического поля использует tgδ угла диэлектрических потерь и диэлектрической проницаемостью ε. Физический смысл tgδ состоит в наличии диэлектрических потерь приводящих к сдвигу фазы между током и напряжением где угол между ними становится меньше 90° на величин, количественные потери волновой энергии оказываются пропорциональны диэлектрическим потерям εtgδ.
Потери на электропроводность в диэлектриках имеющих низкое удельное объемное сопротивление, например, относится абсолютно химически чистая вода. В природе вода является прекрасным растворителем и хорошо растворяет кислоты и по этому электропроводность такой воды имеет большое количество заряженных ионов, которые под воздействием переменного электрического поля, начинают двигаться в такт изменяющемуся волновому электромагнитному полю, преобразуя электрическую энергию в тепловую. Опухолевые ткани максимально насыщенные натриевыми солями гематопорферина и янтарной кислотой, в этом случае являются полупроводниками, содержащими в несколько раз больше заряженных ионов в сравнении с окружающими здоровыми тканями и соответственно их скорость нагрева во много раз выше, чем окружающих здоровых тканей за, одно, и тоже время. В таких опухолевых тканях также дополнительно наблюдаются релаксационные диэлектрические потери обусловленные поворотом полярных молекул воды в направление силовых линий электрического поля. Возникает внутримолекулярное трение, которое еще раз усиливает нагрев опухолевых тканей.
Удельная мощность диэлектрических потерь, отнесенных к единицы объема диэлектрика называют диэлектрическими потерями, которые можно рассчитать по формуле:
Руд=E2fε*tgδ,*10-12Вт/см3
Данное соотношение определяет степень нагрева различных структур опухолевых и здоровых тканей биологического вещества в электрическом поле. Для этого необходимо знать ε и tgδ опухолевых и здоровых тканей, и таким образом очень точно рассчитать скорость нагрева до заданной температуры нагрева опухолевых и окружающих здоровых тканей в однородном электромагнитном поле (ЭМП).
Избирательное поглощение натриевой соли гематопорферина опухолевыми тканями приводит к их избирательному нагреву опухолей и электромагнитной фотолюминисенции до более высокой температуры 50°С при нагреве за это же время, окружающих их здоровых тканей до температуры 40°С, что приводит к инноктивации опухолевых тканей и их последующим разрушением, которые потом, в течение нескольких дней, безболезненно выводятся организмом. Скорость нагрева волновой энергией электромагнитного поля зависит от мощности диэлектрических генераторов и магнетронов.
При колебательной мощности генераторов электромагнитного поля 700-850 Ватт можно нагреть 200-300 грамм опухолевых тканей до температуры 60°С за 2-3 минуты, удельная мощность, выделяемая в опухолях, и температура их нагрева определяется по формуле:
где, Со - теплоемкость опухоли, кал;
m - масса опухоли в граммах;
ΔТ - разность температур нагрева;
t - время нагрева, сек.
Данная формула позволяет подобрать необходимую общую удельную мощность Рудоб для ВЧ и СВЧ нагрева опухолевых тканей Руд оп до заданной разницы температур нагрева и удельную мощность Рудзд выделяемую в здоровых тканях определяемую по общей формуле:
Руд.об.=Руд.оп.+Руд.зд.
Тогда удельная мощность в области облучения с учетом диэлектрических свойств:
Руд.об.=(E2f εoпtgδoп+E2fεздtgδзд)10-12
Зная диэлектрические свойства опухолевых εопtgδоп и здоровых ткaнeй εздtgδзд, можно расчетным путем определить температуры их нагрева ΔT до необходимых заданных температур и определить время нагрева t и общую удельную мощность Руд об, облучаемой области. (Таблица 2)
Аналогично, зная диэлектрические параметры εtgδ и удельную плотность опухолевых тканей насыщенных электрофотосенсибилизаторами в биологических объектах γ гр/см 3, можно расчетным путем найти удельную мощность, выделяемую в опухолевых тканях Руд оп, и определить заданную температуру и рассчитать время их нагрева ВЧ и СВЧ энергией, по выше приведенным формулам.
Изобретение относится к способу инициации гибели опухолевых клеток, предназначенному для комплексного лечения онкологических больных, имеющих опухолевые ткани во всех органах организма человека, путем их гипертермии ВЧ- и СВЧ-энергией, характеризующийся тем, что человек в течение 3 дней переводится на безуглеводную диету, для создания глюкозного голодания и последующего максимального насыщения онкоклеток электронно-ионным раствором натриевой соли гематопорферина препарата «Фотогем» внутривенно в мегадозе 3,1 мг/кг веса человека и перорального приема янтарной кислоты в одноразовой мегадозе 3000 мг на человека, и по истечении 72 часов после приема препарата «Фотогем» и приема янтарной кислоты за 2,5 часа при максимальном накопление препаратов в опухолевых тканях в 8-10 раз выше, чем в здоровых, проводится избирательная гипертермия опухолевых тканей ВЧ-энергией в соответствии с глубиной их расположения и глубиной проникновения электромагнитной волны в тело человека 1100 сантиметров, на разрешенной частоте f=13,56 МГц, со скоростью нагрева опухолевых тканей 0,81°С/сек, в течение 190 сек до температуры опухолевых тканей 52°С, при нагреве здоровых тканей не выше 40°С. Указанный способ приводит к термической гибели опухолевых тканей за счет высокого диэлектрического контраста опухоли и увеличения разницы ее проводимости (диэлектрических потерь) относительно окружающих здоровых биологических тканей, достигающей многократной величины для различных опухолей. 2 табл.
Способ инициации гибели опухолевых клеток, предназначенный для комплексного лечения онкологических больных, имеющих опухолевые ткани во всех органах организма человека, путем их гипертермии ВЧ- и СВЧ-энергией, характеризующийся тем, что человек в течение 3 дней переводится на безуглеводную диету, для создания глюкозного голодания и последующего максимального насыщения онкоклеток электронно-ионным раствором натриевой соли гематопорферина препарата «Фотогем» внутривенно в мегадозе 3,1 мг/кг веса человека и перорального приема янтарной кислоты в одноразовой мегадозе 3000 мг на человека, и по истечении 72 часов после приема препарата «Фотогем» и приема янтарной кислоты за 2,5 часа при максимальном накопление препаратов в опухолевых тканях в 8-10 раз выше, чем в здоровых, проводится избирательная гипертермия опухолевых тканей ВЧ-энергией в соответствии с глубиной их расположения и глубиной проникновения электромагнитной волны в тело человека 1100 сантиметров, на разрешенной частоте f=13,56 МГц, с скоростью нагрева опухолевых тканей 0,81°С/сек, в течение 190 сек до температуры опухолевых тканей 52°С, при нагреве здоровых тканей не выше 40°С.
RU 2006113533 A, 20.11.2007 | |||
СПОСОБ ЛЕЧЕНИЯ РАКА ПРЯМОЙ КИШКИ | 2011 |
|
RU2477641C1 |
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ | 1997 |
|
RU2123827C1 |
СПОСОБ ЛЕЧЕНИЯ РАКА ПРЯМОЙ КИШКИ | 2009 |
|
RU2414936C1 |
US 20180133319 A1, 17.05.2018 | |||
US 20160354466 A1, 08.12.2016. |
Авторы
Даты
2020-06-18—Публикация
2018-07-17—Подача