Способ инициации гибели опухолевых клеток Хлорином-e, аскорбиновой кислотой и ВЧ- и СВЧ-энергией волнового излучения Российский патент 2020 года по МПК A61B18/18 A61N5/00 A61P35/00 A61K41/00 C07D487/22 A61K31/375 

Описание патента на изобретение RU2739252C2

Изобретение относится к медицине и предназначено для индукции гибели опухолевых клеток в живых биологических объектах натриевой соли «Хлорин-е6», содержащихся в медицинском препарате ««Хлорин-е6»» и аскорбиновой кислотой (АК) и энергией волнового ВЧ и СВЧ излучения, известное как ВЧ и СВЧ гипертермия.

Известны способы инициации гибели опухолевых клеток ВЧ и СВЧ гипертермией. Гипертермией именуют, в медицине как значительное повышение температуры тела человека более 40°С. Гипертермия лечения рака использовалась еще полвека назад. Немецкий врач фон Арденне открыл "тепловую" клинику на водяной бане для безнадежно онкологически больных, которых он нагревал до 42°С. После такой процедуры выживало не более 17% людей, но они полностью излечивались. Остальные умирали, не выдерживая такую высокую температуру. Данная технология и сейчас используется в США, где нагревают организм человека до 42,5°С, с последующим возвращением его к жизни. Данная технология лечения может эффективно использоваться при избирательном нагреве онкологических тканей ВЧ и СВЧ энергией без существенного повышения температуры здоровых тканей, окружающих опухоли.

Способ инициации гибели опухолевых клеток электромагнитной энергией волнового излучения, заключается в комплексном одновременном воздействии натриевой солей Хлорина-е6 и аскорбиновой кислоты (АК) к которым относится, концентрат для приготовления раствора для инфузий препарата «Хлорина-е6». Препарат "«Хлорин-е6»", и АК очень хорошо растворяется в водных растворах. Накопление натриевой соли Хлорин-е6 в опухоли происходит в течение 48-72 часов после его введения внутривенно. Затем уровень, после 72 часов, натриевой соли Хлорин-е6 в опухоли постепенно снижается, достигая исходных значений через 14 дней после введения препарата Хлорина-е6 внутривенно (капельно) с 30 минутной инфузией в полузатемненном помещении в однократной дозе 2-3 мг/кг массы тела с предварительным разведением в 40 мл стерильного физиологического раствора, препарат хранят в темном месте, за 24 часа до проведения диагностики и гипертермии опухолевых тканей ВЧ и СВЧ энергией волнового излучения. Максимальное содержание натриевой соли Хлорина-е6 и АК в опухолевых тканях наступает именно в этот период времени, и он выше, чем в здоровых тканях в 3-4 раза, за счет избирательного поглощения этой соли опухолевыми тканями. Препарат выводится и перераспределяется из нормальных тканей и кровеносной системы человека в опухоль через сутки, на 94% после внутривенного введения. При одновременной, в этот период ВЧ и СВЧ, избирательной гипертермии опухолевых клеток в течение 235 сек волновым излучением на разрешенных частотой колебаний электромагнитного поля f=13,56 мГц; f=40,68 мГц; f=433 92 мГц; f=915 мГц и f=2400 мГц, со скоростью нагрева 0,044°С/сек до конечной температуры для нагрева опухолевых клеток 47°С. Концентрация препарата "Хлорин-е6" в опухоли достигает максимальных значений в течение первых 3-5 часов после его внутривенного введения и сохраняется в течение суток, в остальных органах и тканях концентрация препарата, за этот период времени, резко снижается, что обуславливает максимальное повреждение опухоли при проведении ВЧ и СВЧ электромагнитной гипертермии в этот период времени. По истечении 5 часов, после его внутривенного введения, происходит более быстрое выведение "Хлорина-е6" из здоровых тканей в сравнении с опухолевыми. Результатам этого является, высокий флюоресцентный контраст опухоли и увеличения ее проводимости (диэлектрических свойств) относительно окружающих здоровых биологических тканей, достигающей разницы 3-4 кратной величины для различных опухолей. Это позволяет при проведении флюоресцентной диагностики уточнять границы опухолей и одновременной гипертермии опухолевых клеток энергией волнового излучения и выявлять, и разрушать, таким образом, даже неопределяемые опухолевые образования, находящиеся в глубоких слоях биологического объекта энергией волнового излучения.

Известный ученый Лаунус Полинг провел научные данные положительного влияния аскорбиновой кислоты на замедление ракового процесса. Некоторые специалисты объясняли это тем, что АК, принималась больными людьми большими дозами в виде таблеток и не всегда давала положительный эффект из-за того, что в самой опухоли концентрация АК была невысокой. Было выдвинуто предположение, что механизм подавления опухоли связан не с АК, а ее окисленной формой. Это и было подтверждено научными исследованиями. В экспериментах, где принималось Дегидро-АК, результаты постоянно возобновлялись. Данные результаты были опубликованы в 80-х и начале 90-х XX века. Наиболее полное их описание было приведено в 1991 году в журнале американской ассоциации клинического питания. Хорошие результаты получены по лейкемии у мышей. Скепсис научного мира тем не менее не позволил обратить серьезное внимание к этим данным. Одиночки медики продолжали исследования по лечению рака витамином С, не вникая в особенно в теоретические основы этого процесса. Исследователь из Канады Джон Тьюэ попытался раскрыть механизмы воздействия АК на опухолевые клетки. Его итоговая работа была напечатана в "Cancer letters" в 2008 году. В настоящее время медики АК используют как дополнительное средство, снижающее побочное действие химиотерапии.

Известен комплекс растворов натриевой соли «Хлорин-е6» и аскорбиновой кислоты. Данный комплекс натриевой соли «Хлорин-е6» и аскорбиновой кислоты на клеточной мембране, принимается онкоклетками за глюкозу.

При ВЧ и СВЧ нагреве опухолевых тканей натриевая соль "Хлорина-е6", окисляется перекисью водорода производной дегидроаскорбиновой кислоты (Д-АК) в щелочной среде, реакция катализируется гемом железа, и вызывает хемилюминесценцию с активным выделением синглетного кислорода. Если к щелочному раствору онкоклеток добавить окислитель - перекись водорода, то происходит свечение. В присутствии катализаторов это свечение усиливается, и становится более ярким. Роль катализаторов раствора натриевой соли препарата "Хлорин-е6", осуществляется гемином железа крови и различными натриевыми соединениями. Данные химические активаторы хемилюминесценции вступают в химические реакции с активными формами кислорода или органическими свободными радикалами, в ходе которых образуются молекулы клеток в возбужденном электронном состоянии. Наблюдение при этом свечении связано с переходом молекул в свое основное состояние, что приводит к высвечиванию фотонов. Активатором возбужденного состояния является натриевые соли " Хлорин-е6" в присутствии радикалов кислорода. Под действием АК окислителя - радикалов перекиси водорода, происходит образование, вступающего в реакцию с супероксидным радикалом, образующим внутреннюю перекись (диоксид), который приводит к образованию возбужденной молекулы натриевой соли препарата «Хлорин-е6». Переход этой молекулы в основное первоначальное состояние сопровождается излучением квантом света. Перексид водорода основной участник образования свободных радикалов, постоянно в небольших количествах образуется в организме человека, это относительно безобидное соединение, но в присутствии ионов металлов переменной валентности железа, меди, марганца и хрома или геминовых соединений из пероксида водорода Н2О2 образуется разрушительный гидроксильный радикал JOH, вызывающий мутации, и инактивацию ферментов и повреждения биологических мембран онкологических клеток. Гидроксильная группа ферментов вызывает активацию молекул, и активно вступает с ним в химическую реакцию в биологических опухолевых тканей и тканевые макрофаги, в борьбе с чужеродными клетками выделяют активные формы кислорода, содержащихся в супероксидных радикалах, перексида водорода Н2О2, и радикала гидроксила JOH в этом случаи наблюдается слабая хемилюминесценция, которая усиливается многократно в присутствии натриевой соли препарата «Хлорин-е6». Эти эффекты также многократно усиливаются, при действии на кровеносные сосуды и клетки, кратковременных электрических импульсов, вызывающих увеличение проницаемости клеточных мембран - ритикуломов и стимуляцию выделения митохондриями клеток активных форм кислорода, что приводит к яркому свечению.

При помещении в переменное электромагнитное поле высокой напряженности и частоты различных биологических тел, они начинают испускать характерное сияние различной интенсивности и цветов, по которому можно судить о свойствах изучаемого объекта. Метод «высокочастотного фотографирования» (эффект Кирлиан, кирлианография в честь изобретателя В.Х. Кирлиан) получил в настоящее время широкую известность в России и за рубежом как метод экспериментальных исследований электромагнитных полей и биоэнергетических взаимодействий. Но наибольший научно-практический интерес представляют исследования свечения биологических объектов в переменном электромагнитном поле высокой частоты.

В соответствии с современными представлениями водные растворы щелочей и кислот в организме человека рассматривается как ассоциированная жидкость [7], состоящая из отдельных ассоциированных элементов - нейтральных кластеров и кластерных ионов общей формулы (Н2О)n, [(H2O)n]+, [(H2O)n]\ [(NO2)n], [(H2O2)n], [(NaO2)n] [(ClO2)n], [(CO2)n] и т.д. где количество связанных в водородные связи молекул воды может в n раз достигать, по мнению некоторых авторов сотен и даже тысяч единиц [8]. Изменение положения одного структурного элемента (молекулы воды) под действием любого внешнего фактора или изменения ориентации окружающих соседних молекул воды обеспечивает высокую чувствительность всей информационной системы воды к различным внешним воздействиям (электромагнитные, тепловые, звуковые поля, биовоздействие и др.).

Кроме этого, в водных кластерах за счет взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (H+) по эстафетному механизму, приводящие к делокализации протона в пределах кластера. Это свойство объясняет чрезвычайно лабильный, подвижный характер взаимодействия кластеров друг с другом.

Структурированное состояние водных растворов является чувствительным датчиком различных полей - электромагнитных, акустических, энерго-информационных и др. [10]. Кроме этого водные растворы, различных химических элементов, является источником сверхслабого и слабого переменного электромагнитного излучения. В этом случае может произойти индукция соответствующего электромагнитного поля и резонансные эффекты совмещения (суперпозиции) электромагнитных полей, способных изменять структурно-информационные характеристики биологических объектов, на 80-90% состоящих из воды с различными химическими примесями.

Под действием электромагнитного поля высокой частоты в биологических объектах и водных растворах различных химических веществ, происходит возбуждение, поляризация и ионизация молекул N2, Н2, O2 и CO2. В результате образуется ионизированный газ с отделенными электронами, обладающими отрицательными зарядами, создающими электропроводящую среду для формирования коронного разряда в биологических объектах различных цветов, которые в зависимости от электропроводящих свойств объекта могут окрашивать корону свечения в различные цветовые гаммы. Форма короны свечения, ее плотность, яркость и поверхностное распределение определяются, в основном, электромагнитными параметрами объекта.

Некоторые клетки организма гранулоциты и моноциты в крови, и тканевые макрофаги, в борьбе с чужеродными клетками выделяют активные формы кислорода, содержащихся в супероксидных радикалах, пероксида водорода H2O2, и радикала гидроксила JOH в этом случаи наблюдается слабая хемилюминесценция, которая усиливается многократно в присутствии Д-АК и АК при ВЧ и СВЧ облучении. Эти эффекты также многократно усиливаются, при действии на кровеносные сосуды и клетки, кратковременных электрических импульсов, вызывающих увеличение проницаемости клеточных мембран - ритикуломов и стимуляцию выделения митохондриями клеток активных форм кислорода.

Этот эффект воздействия электрических импульсов в начале XIX века успешно демонстрировал публике Николо Тесла, при облучении импульсной высокочастотной энергией сосудов с жидкостями обладающими способностью излучать свет и люминесцентных ламп, которые без подсоединения к электрическим проводам светились, ярким светом в руках Николы Тесла, которыми он еще и жонглировал, что вызывало неподдельный восторг у зрителей, при этом необъяснимым тогда природой явлением, который знал только Николо Тесла.

Эти эффекты в биологии получили название собирательных стимулов люминесценции изменяющих состояние фагоцитов крови и тканей и их способности увеличивать выделения активных форм кислорода, и соответственно защитных функций клеток.

В онкологических клетках аэробное дыхание отсутствует в митохондриях и заменено на гликолиз. АК при поступлении в онкоклетку ингибирует гликолиз, но не в силах перевести ее на путь нормальной аэробности. Возможно, это связано с конкурентным присутствием глюкозы.

Для полного отключения гликолиза в опухолевых клетках необходимо полностью исключить доступ глюкозы или чтобы в субстрате преобладала АК и натриевой соли Хлорин-е6 над глюкозой и под действием электромагнитного поля ВЧ и СВЧ вызывающих их нагрев, с большим выделением перекисей водорода и образованием люминола, основных активаторов гибели опухолевых клеток. У здоровых клеток АК и АЛК в малых количествах в цитозоле она проявляет защитные антиоксидантные свойства. В онкологических клетках, при их переизбытке, стимулируются процессы окисления, с образованием перекиси водорода и липоперекисей, оказывающих стабильное токсическое действие на онкоклетки.

Можно утверждать, что эффект был бы выше, если бы в основу было положено лечение натриевой солью Хлорин-е6 и АК на фоне полного перекрытия поступления углеводов - глюкозы, как конкурентов натриевой соли Хлорин-е6 в онкоклетках. В онкологических клетках аэробное дыхание отсутствует в митохондриях и заменено на бескислородный гликолиз. Натриевая соль Хлорин-е6 вместе с АК при поступлении в онкоклетку ингибирует гликолиз, но не в силах перевести ее на путь нормальной аэробности. Возможно, это связано с конкурентным присутствием глюкозы. Для полного отключения гликолиза в опухолевых клетках необходимо полностью исключить доступ глюкозы или чтобы в субстрате преобладала АК и натриевая соль Хлорин-е6 над глюкозой. У здоровых клеток в малых количествах в цитозоле она проявляет защитные антиоксидантные свойства. В онкологических клетках, при их переизбытке АК и АЛК, и дополнительным одновременным воздействии на онкоклетки ВЧ и СВЧ электромагнитной гипертермии стимулируются процессы окисления, которые при их переизбытке, оказывают токсическое действие на онкоклетки. Для этого по нашему мнению необходимо перевести человека на безуглеводную диету в течение 3-х дней, для полного отсутствия в это время в питании человека углеводов, которые в желудочно-кишечном тракте превращаются в глюкозу, крайне необходимую для питания онкоклеток. При таком введении онкоклеток в искусственное глюкозное "голодание" затем человеку необходимо ввести высокие разовые дозы 2-3 мг/кг массы тела натриевой соли Хлорин-е6 и 500 мг АК. Необходимое количество препарата из расчета максимально допустимой разовой мегадозы натриевой соли Хлорин-е6, не превышающей 2-3 мг/кг и 500 мг АК. Под действием ферментов, в организме человека, натриевые соли Хлорин-е6 и АК накапливаются и определяется внутриклеточной концентрацией (уровнем накопления сенсибилизатора) его локализацией в клетке и фотохимической активностью (квантовым выходом генерации синглетного кислорода или свободных радикалов), обеспечивая флюоресцентный контраст опухоли и увеличение ее проводимости, относительно окружающих здоровых биологических тканей. При поступлении натриевой соли Хлорин-е6 и АК в кровяностные сосуды опухоли, имеющие большую разветвленную сеть с тонкими периферийными сосудами и малой скоростью движения крови в них, ток крови в этих сосудах опухолевых тканей еще больше уменьшается при их нагревание, что приводит к свертыванию крови в сосудах опухолевых тканей, не позволяя им охлаждаться, в виду отсутствия замкнутой системы кровообращения. Это прямое цитотоксическое воздействие на опухолевые клетки, нарушающее их кровоснабжение, за счет повреждения эндотелия кровеносных сосудов опухолевой ткани, за счет гипертермического эффекта и цитокиновых реакций, при этом происходит активизация макрофогов, лейкоцитов и лимфоцитов, приводящих к некрозу опухоли. В основных органах человека, богатыми кровеносными сосудами, замкнутыми в основную систему кровообращения, происходит охлаждение пограничных здоровых тканей, подверженных ВЧ и СВЧ гипертермии. "Голодная" опухоль максимально насыщается натриевой солью Хлорин-е6, и АК, как гликолизного транспорта в 3-4 раз выше, чем в обычных здоровых тканях, и накапливается в достаточно большом количестве на мембранах и в межтканевой жидкости.

Дегидроаскорбиновая и натриевой соли Хлорин-е6, активно импортируется в эндоплазматические ретикулы (ЭПР) (Эндоплазматическую сеть, состоящую из мембран и задающую направленность, и активный транспорт субстратов против градиентов) клеток с помощь транспортеров глюкозы. Следует отметить, что энергетические процессы в онкоклетках переносятся из митохондрий в эндоплазматический ретикул. Именно здесь в ЭПР и накапливается Д-АК и натриевой соли Хлорин-е6 и среда онкоклетки в этом месте существенно отличается от обычных клеток, они просто здесь перевосстановленны и здесь Д-АК, очевидно, вынуждено восстановиться до АК, а натриевой соли Хлорин-е6 до гиминов. С этого момента начинается разрушительное действие АК и натриевой соли Хлорин-е6 на онкоклетку. "Голодная" онкоклетка в это время может многократно накапливать в себе Д-АК и натриевой соли гематопорферина, т.к. воспринимает их на своих мембранных транспортерах за глюкозу. Поскольку глюкозопотребляющих рецепторов в онколетке многократно больше, чем у здоровых, хотя транспортные системы поставки глюкозы и Д-АК и натриевой соли Хлорин-е6 в клетки общие это и является для онкоклеток "Троянским конем". Таким образом, можно очень просто обмануть онкоклетки и закачать в них Д-АК и натриевой соли Хлорин-е6, с решением проблемы подачи мегадоз Д-АК и натриевой соли Хлорин-е6 и тогда феномен гибели онкоклеток будет многократно усилен.

"Голодная" опухоль при отсутствии гликолиза максимально насыщается натриевой солью Хлорин-е6 и аскорбиновой кислотой, в 3-5 раз выше, чем в обычных здоровых тканях, стимулирует образование макрофагов и, Т-лимфоцитов под действием фермента феррахелатазы, в достаточно большом количестве на мембранах и межтканевой жидкости. Именно это химическое соединение образуется в процессе взаимодействия натриевой соли Хлорин-е6 и аскорбиновой кислоты во внутренней среде организма. Под действием окислителя радикалов липоперикисей и перекиси водорода, значительно усиленным температурным действием и дополнительным действием, электромагнитных полей ВЧ и СВЧ происходит образование супероксидных радикалов, ускоряющих и образующих внутреннюю перекись (диоксид), и перекись водорода Н2О2 при ВЧ и СВЧ гипертермическом разложении, АК витамина С. В этом случаи происходит многократное усиление в образовании возбужденных молекул кислорода. Переход молекул диоксида натриевых солей из возбужденного в основное состояние сопровождается испусканием квантов света, и сильным свечением. В результате этих химических реакций связанных с высоким выделением активных форм водорода и кислорода и органическими свободными радикалами, выжигаются онкологические клетки.

Метод "избирательного голодания" онкоклеток поверхностных и глубоко расположенных в теле человека, путем последующего введения или приема различных сенсибилизаторов, для избирательного максимального насыщения опухолевых клеток высокоэлектропроводящими электроно-ионными растворами электрофотосенсибилизаторов при максимальном разделении электрофизических свойств, опухолевых и здоровых тканей с последующим избирательным воздействием на них электромагнитными полями высокой частоты в комплексе с другими методами - это самое актуальное научно-практическое направление в борьбе с онкологическими заболеваниями

Изучение биофизического и биохимического механизмов комплексное воздействие ВЧ и СВЧ энергии на онкоклетки насыщенные АК и натриевыми солями Хлорина-е6 предполагают три концепции гибели онкоклеток, одна предполагает значимость Д-АК и АК, а другая, натриевая соль Хлорин-е6, третья значимость ВЧ и СВЧ гипертермии, что при одновременной обработки ВЧ и СВЧ энергией опухолевых тканей насыщенных вышеперечисленными растворами в обоих случаях приводит к явной 100% гибели онкоклеток.

У здоровых клеток, Д-АК и натриевой соли Хлорин-е6, поступая в ЭПР. не будет восстанавливаться до АК и АЛК, т.к. рН и ОВП (Окислительно-восстановительный потенциал) для этого не подходят, а Д-АК и АЛК для них будет практически безвредна и трансформироваться на глюкозном конвейере. В онкоклетках среда другая, перевосстановленная в аскорбиновую кислоты и натриевой соли Хлорин-е6, которые стараются по максимуму в онкоклетке все сжечь и уничтожить, за счет перекисного окисления липидов (ПОЛ). В этом случае происходят существенные разрушения с образованием токсичных липоперекисей, повреждающих клеточные мембраны, различных органел, мутацией нуклеиновых кислот, инокцивации ферментов, разрушением питательных веществ и гибель клеток. В данном случае гибель клеток идет не по пути апоптоза, а по пути некроза.

Аскорбиновая кислота и натриевая соль Хлорин-е6, в онкоклетках преобразуется в Дегидроаскорбиновую кислоту, и натриевой соли Хлорин-е6, под действием температуры, с образованием перекиси водорода и других липоперекисей. Чем больше Дегидроаскорбиновой кислоты и натриевой соли Хлорин-е6 в онкоклетке, тем больше образовывается в ней липоперекиси и перекиси водорода, в сравнении со здоровыми клетками. Избыток перекиси водорода и липоперекиси запускает механизм гибели раковых клеток. Процесс гибели онкоклеток инициируется ВЧ и СВЧ полем путем быстрого нагрева онкоклеток до 47°С, насыщенных Д-АК, и, натриевой соли Хлорин-е6 их быстрого окислительного распада под действием температуры с большим выделением перекиси водорода и липоперекисей, что является губительным для онкоклеток.

Ряд исследователей утверждают, что минимолярное концентрация витамина С, являющегося прооксидантом (ликоокисляющиеся соединения, нитрализующие свободные радикалы), в крови и тканях убивают раковые клетки, не затрагивая здоровых, за счет вызываемого локального оксидативного стресса-процесса повреждения, в результате окисления, клеточной ДНК и истощения аденозинтрифосфата (АТФ)-источника энергии клетки. Перекись водорода в числе других сопутствующих ей молекул, агресивного воздействия, вызывает сбой функционирований определенного фермента, ответственного за "питание" клеток злокачественных опухолей. АК и натриевой соли Хлорин-е6, могут накапливаться в цитозоле клеток, нарушают эндотелии кровеносных сосудов опухолей и цитокиновые реакции, стимулирующих ФНО-а, активизирующих микрофаги, лейкоцитов и лимфоцитов, активно повреждают опухолевые клетки.

Основная задача для исследователей, заключается в том, чтобы как можно больше усилить эффект максимального избирательного поглощения раковыми клетками Д-АК, АК и натриевой соли Хлорин-е6 с одновременной электромагнитной гипертермией опухолевых клеток ВЧ и СВЧ энергии с целью повышения эффективности лечения до 100%. Уже доказано, что такой эффект возможен, а самое главное, что он безвреден, без особых побочных эффектов. Многочисленные исследования проведенные нами в Красноярском ГАУ и ВИЗРе г. Санкт-Петербурга подтвердили 100% эффективность обеззараживания семян овощных культур и живых биообъектов насыщенных высокопроводящими электронно-ионными растворами микроэлементов ВЧ и СВЧ энергией против вирусных инфекций, имеющих похожее происхождение с онкоклетками.

А.с. №563938 СССР. Способ обработки семян сельскохозяйственных культур / Цугленок Н.В., Цугленок Г.И. - Опубл. 16.03.1977, Бюл. №25. Свидетельство СССР №950214. Способ предпосевной обработки семян / Цугленок Н.В. - Зарегистрировано в реестре 14.04.1982. 45. Интенсификация тепловых процессов подготовки семян к посеву энергией ВЧ и СВЧ: методические рекомендации / Н.В. Цугленок. - М.: Агропромиздат, 1989. Методические рекомендации по использованию энергии ВЧ и СВЧ в процессах подготовки семян к посеву / Н.В. Цугленок. - М.: РЖ Госагропром СССР, 1989. - 19 с. Пути обеззараживания семян томатов против вирусной инфекции / Ю.И. Власов [и др.] // Всероссийский НИИ защиты растений (ВИЗР). - 1989. - Т. 71. - С. 49-54. Способ обеззараживания яичного порошка. Номер патента: 1734632. Опубликовано: 23.05.1992 г. Авторы: Цугленок Н.В. Колмаков Ю.В. МПК: А23в 5/02. Способ приготовления среды для разбавления спермы производителя Номер патента: 1769422. Опубликовано: 27.06.1995. Авторы: Цугленок, Осташко, Шахматов, Силантьева, Концедал.

Доказано, что онковирусы под действием канцерогенов встраиваются в здоровую клетку и со временем растворяются в ней, превращая ее в онкоклетку. Любые вирусы убиваются температурой или кислотой. Другие методы против онковирусов и онкоклеток в основном бессильны, их просто нет. Особого внимания заслуживает в этом направлении новый фотодинамический метод использования лазерных фотосенсибилизаторов. Но малая глубина проникновения электромагнитной волны лазерных излучателей не позволяет выжигать глубокорасположенные злокачественные опухоли.

Необходимо отметить еще один очень важный биофизический процесс-увеличение удельной электропроводности вирусов состоящих из белковой оболочки наполненной смесью нуклеиновых кислот и аналогично опухолевых клеток, наполненных растворами межклеточной жидкости определяемых значительной концентрацией ионов и электронов и их подвижностью в сравнении со здоровыми тканями. При повышении температуры при ВЧ и СВЧ нагреве в опухолевых тканях подвижность ионов и электронов значительно возрастает, увеличивая их электропроводность и диэлектрические потери, что еще больше усиливает их избирательный нагрев и апоптоз опухолевых тканей.

Этот эффект излечения объясняется тем, что в это время от 3 до 5 часов в нормальных клетках живых биологических объектах аскорбиновая и натриевой соли Хлорин-е6, быстро превращается в Дегидроаскорбиновую кислоту и двухвалентный гем железа, под действием фермента феррохелатазы, сохраняя при этом высокий контраст содержания Дегидроаскорбиновой кислоты и натриевой соли Хлорин-е6, и их превращения в аскорбиновую кислоту в опухоли, что значительно увеличивает ее электрическую проводимость со значительным изменением диэлектрических свойств опухолей, относительно окружающих здоровых биологических тканей, достигающих этой разницы во много раз.

Опухолевые клетки накапливают, в отличие от нормальных, значительное количество гомоцистеин теолактона (HTL). До вставки в белок гомоцистеина, он становиться биологическим браком, в виде (HTL). В обычных клетках гомоцистеина мало, поэтому и теолактон из него практически не образуется, но превращение в раковую клетку требует значительной активизации метилирования, что в свою очередь запускает специальный биохимический цикл, в котором учувствует гомоцистеин. В этом случае белок, синтезирующая машина раковой клетки, работает на полную мощность, поэтому чаще ошибается. Тьюэ обнаружил, что взаимодействие с Дегидроаскорбиновой кислотой, это вещество образует высокотоксичный 3-меркаптоппропионовый альдегид (МРА). Когда в раковую клетку, насыщенную HTL, попадает Дегидроаскорбиновая кислота и натриевой соли Хлорин-е6 образовывается МРА, который и убивает раковые клетки. Разрушая раковые клетки, МРА ликвидирует источник своего образования, поэтому нормальные клетки под действием натриевой соли Хлорин-е6 от него сильно не страдают. В этом случае можно утверждать, что при лечении рака Дегидроаскорбиновой и натриевой соли Хлорин-е6, полученными в результате окисления АК и натриевой соли Хлорин-е6, как в крови, так и в различных органах человека, наблюдается лечебный эффект.

Биофизический смысл данного метода заключается в избирательном максимальном насыщении и накоплении в опухолевых клетках высокоэлектропроводящих электронно-ионных растворов электрофотосенсибилизаторов и в максимальном разделении электрофизических свойств, опухолевых и здоровых тканей Дегидроаскорбиновой и натриевой соли Хлорин-е6, и существенным увеличением разницы электрических потенциалов опухолевых и здоровых клеток в межклеточной среде и на стенках ретикулума. Ретикулум - это электрический контур, где очевидно по одной стороне мембраны скапливаются отрицательные заряды, а по противоположной положительные, поэтому ретикулум является электротранспортером глюкозы и других питательных веществ раковых и здоровых клеток. Следовательно, ретикулум это электрическая сеть, заряженная отрицательными и положительными зарядами. Баланс этих зарядов строго контролируется активностью митохондрий и энергетическими операторными структурами на внешней стороне клетке - на цилиях. Эти белки при определенных ситуациях в окружающей среде клетки, разряжаясь, могут давать активный сигнал на ретикулум и митохондрий. При этом меняется баланс, существующий зарядов на одной из сторон ретикулума. Это ведет к сдвигу в химических процессах, запускаются многие новые реакции. Одна сторона мембраны ретикулума подключена к одному типу входа в митохондрий, а противоположная - к выходу из нее. Таким образом, создается единая электрическая цепь двойного активного управления энергетикой митохондрий. Напряженность электрического поля на ретикулуме держит под контролем работу митохондрий. В этом случае митохондрий затягивают заряды, скопившиеся на одной стороне мембраны ретикулума, и выводят противоположные заряды на другую сторону мембраны ретикулума. Заряды, таким образом, не смешиваются и разобщены. Это важно для того, чтобы в клетках проходил ионный обмен. Внешне ретикулум похож на обкладки конденсатора, чем больше слоев обкладок, тем больше его электроемкость. Между прокладками находится полупроводник, насыщенный Дегидроаскорбиновой, аскорбиновой кислотами и натриевой соли Хлорин-е6. Этот конденсатор, т.е. мощную густую сеть обкладок-мембран опухоли очень хорошо видно через микроскоп. В опухолевых клетках количество мембран значительно выше, чем в здоровых. Соответственно плотность опухолевых тканей и емкость биологического электрического конденсатора значительно выше здоровых тканей. При зарядке на одной пластине такого конденсатора будут собираться отрицательно заряженные частицы-электроны, а на другой - ионы, положительно заряженные частицы. Такой заряженный конденсатор может превратиться в источник тока, если его отключить. Любые колебания внешнего поля на внешней стороне мембраны клеток сказывается на состоянии ретикулума, который сбрасывается заряд на митохондрий, управляя их активностью. Митохондрий, в свою очередь, настроены так, что никогда не позволяют снизиться зарядам на ретикулуми ниже критического уровня. В онкологических клетках заряды внутри митоходрий резко снижаются и вся система регулировки нарушается. Это главный стержень управления всей элетрохимической энергетикой клетки. Поэтому химические процессы всегда вторичны и не являются основными. В результате электрохимической энергетике клетки в ретикулуме имеется круговорот веществ, где насосом являются митохондрий.

При недостатке этого круговорота между ретикулуми и митохондриями за счет электроосмоса идет подсос веществ извне через наружную мембрану и открытие на ней шлюзов и натриевой помпы. Среда на мембранах ретикулума и щелочном жидком субстрате в опухолевых клетках перевосстанавливается, в связи с избытком минусовых зарядов. Это и определяет химическое равновесие по рН, сопряженных буферных химических элетропарных веществ, когда буферная система разряжается или восстанавливается. Регулируют эти процессы заряды на обкладках ретикулума и митохондриях. Химические процессы, в этом случае, просто исполнители, посредники. Наружная сторона митохондрий обеспечивает напряжение зависимого анионного канала. Этот механизм поддержания напряжения называется VDAC, задает условия работе ретикулума. Именно здесь на наружной стороне мембраны находится фермент Гексокиназа II, обеспечивающий утилизацию глюкозы или ее заменителей. Разделение, рассоединение работы наружной митохондриальной мембраны (VDAC) и Гексокиназа II обеспечивает индукцию апоптоза опухолевых клеток.

Митохондрия работает путем затягивания из ретикулума в себя как электромагнитный насос, необходимое питание под большим напряжением. Без этого эффекта высочайшего напряжения затягивания внутрь питательных веществ, в клетку не будет. В этот процесс саморегулировки обмена включены так называемые цилии и конформационные белки, работающие как единый замкнутый энергетический контур. У онкоклеток, в отличие от нормальных клеток, нет цилий. Этот, наиболее поражаемый, энергетический уровень в онкоклетках отсутствует. Единственный правильный путь в борьбе с раковыми клетками найти слабое место в энергетике онкоклеток и за счет этого их уничтожить. Митохондрий задают степень заряженности ионным насосам на внешней мембране клетки и стартерным структурам, удерживающим заряды на ретикулуме. Эти сенсорные структуры могут наиболее быстро повреждаться и выгорать, поскольку митоходрий это наиболее эффективные электрохимические топки. В случае отключения митохондрий градиент напряжения клетки резко уменьшается и процессы идут в онкоклетках на гораздо большей площади, что позволяет им сжигать много глюкозы и других субстратов типа кетонов. Высокой степени сгорания глюкозы здесь нет. Онкоклетка берет не качеством, поскольку все сконцентрировано на малой площади митохондрий, но при их большем количестве, намного большем, чем в здоровых клетках и соответственно при высоких потенциалах на обкладках конденсатора, т.е. большим количеством площади окисления-сгорания на стенках сети ретикулума. Поэтому кислород такой клетке не нужен, но при этом потребление глюкозы будет, гораздо большим, чем в здоровых тканях.

Мембраны - ретикулумы и ядра клетки одни и те же, причем ретикулум как конденсатор законтурен на ядро, только одной своей стороной-электроном и сбрасывает электроны в ядро. Таким образом, заряд ретикулум обеспечивает и заряд внутри ядра клетки. Ядро клетки насыщено электрофильными белками, которые обеспечивают концентрацию сверхмощного электростатического заряда внутри ядра.

Основная задача для исследователей, остается в том, чтобы как можно больше усилить эффект максимального избирательного поглощения аскорбиновой кислоты и натриевой соли Хлорин-е6, раковыми клетками и повысить эффективность лечения, за счет увеличения электропроводимости митохондрий и ретикулумам раковых клеток при одновременной избирательной ВЧ и СВЧ гипертермии раковых клеток. Уже доказано, что такой эффект возможен, а самое главное, что он безвреден, без особых побочных эффектов. Электропроводность раковых клеток обусловлена наличием в них подвижных заряженных электронов на ретикулумах и в ядре клетки и ионов в митохондриях клетки. Величина электропроводности зависит от количества электрических зарядов и их подвижности. Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которая в различных тканях разная, в связи с чем биологические объекты обладают свойствами проводников, полупроводников и диэлектриков.

В межклеточной жидкости, насыщенной аскорбиновой кислоты и натриевой соли Хлорин-е6 содержится максимальное содержание ионов и удельная электропроводность опухолевых тканей высока и составляет более 1 См ⋅ м-1. Крупные белковые молекулы имеют более низкую электропроводность, до 0,003 См ⋅ м-1. Внутриклеточные мембраны имеют проводимость ниже (1-3⋅10-5) См ⋅ м-1. Наибольшие величины электропроводности в организме человека имеют жидкие среды (кровь, лимфа, желчь, моча, спинно-мозговая жидкость и опухолевой клетки(0,6-2,0 См м-1) и мышечная ткань (0,2 См ⋅ м-1). Самую низкую удельную электропроводность имеет костная, жировая и нервная ткани, в особенности грубоволокнистые соединительные ткани и ткани зубной эмали (10-3-10-6 См ⋅ м-1). Значительно более сложный характер носит электропроводность клеток и тканей при ВЧ и СВЧ токах. В этом случае биологические объекты обладают как проводимостью, так и емкостным сопротивлением, характеризующим диэлектрическую проницаемость. Частотная зависимость электрических параметров и поглощение энергии электромагнитного поля определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках и содержанием в них свободной воды. Все эти факторы приводят к изменению электропроводности биологических объектов. Особенно значимым фактором для метаболизма онкологических клеток является содержание в них глюкозы или ее заменителей, в данном случае аскорбиновой и натриевых солей Хлорин-е6. Если в организме человека есть злокачественные опухоли и метастазы 3 и 4 стадии, которые активно и интенсивно усваивают глюкозу или ее заменитель - аскорбиновая кислота и натриевой соли Хлорина-е6, они преобразовываются в АТФ в раковых клетках значительно ниже, чем в здоровых, в результате чего, раковые клетки сильно разогреваются и повышают температуру тела человека на 1-2°С. Данный физиологический механизм индуцирует повышение температуры опухолевых и близлежащих к ним нормальных тканей. Суммарный подъем температуры, в настоящее время, регистрируется СВЧ - радиометром с точностью 0.3°С, при определении температуры, глубоко расположенных опухолевых и здоровых тканей.

Данный процесс частично был изучен нами при воздействии на биологический объект с опухолевыми тканями при воздействии на них магнитных полей, которые подвергались ежедневному комплексному воздействию постоянного магнитного поля с интенсивностью 25 мкТл и переменного магнитного поля частотой 3,1 Гц и интенсивностью 5 мкТл, экспозиции 60 минут в день единовременно, в течение 5 дней. Предлагаемый способ воздействия постоянного и переменного воздействия на ионный обмен в митохондриях клеток и на отрицательно заряженные электроны на ретикулумах и ядрах клеток позволял осуществлять индукцию гибели опухолевых клеток при помощи магнитотерапии, что на 40%, по сравнению с контролем, освобождало биологические объекты от опухолевых клеток (патент №2307681, авторы: Цугленок Н.В., Сергеева Е.Ю., Климацкая Л.Г. RU). Поэтому данное направление использования магнитных и электромагнитных полей и их воздействие на энергетику опухолевых клеток заслуживают особого внимания, подтверждается исследователями из Южной Кореи, которые предложили использовать для уничтожения опухолевых клеток мощное магнитное поле. В мощном магнитном поле опухоль начинает убивать сама себя.

Известен способ разрушения раковых клеток при СВЧ-облучения (Патент РФ №2174021, МПК A61N 5/02) перед воздействием гипертермии осуществляют воздействие на опухоль СВЧ излучением с длиной волны 1,3-2 см и выявляют значение резонансной частоты поглощение опухолями. После чего осуществляют аналогичное воздействие на пограничное с опухолью здоровые ткани и выявляют значение резонансной частоты поглощение этих здоровых тканей. Одновременно с гипертермией осуществляют контроль значений резонансных частот поглощение энергии опухолями и здоровыми тканями и при сближении значений резонансных частот поглощение энергии опухолями и здоровыми тканями судят об эффективности лечения. Данный способ позволяет повысить эффективность лечения опухоли методом СВЧ гипотермии при их нагреве до 43°С.

Основным недостатком данного способа является небольшая разница в нагреве опухолевых и здоровых тканей.

Известен способ деструкции раковых клеток опухолевых тканей (Патент РФ №2106159 МПК A61N 5/02, A61N 5/6) сущность изобретения включает внедрение в область локализации опухоли ферромагнитных частиц, с последующим индукционным локальным нагревом, в диапазоне температур от 42°С до 45°С, в течении времени, определяемая видом опухоли, ее размерами, локализацией и типом ферромагнитных частиц, выбранных для индукционного нагрева, при этом нагрев проводят только в моменты уменьшения кровенаполнения ткани, т.е. в моменты выдоха и диастопы сердца пациента. Диапазон нагрева контролируют по СВЧ глубинному термометру, а нагрев ведут автоматически, с помощью компьютера, в режиме биоправления, по алгоритмам математической модели колебаний теплопроводности и теплоемкости ткани, гистерезиса нагрева и теплоотвода.

Основными недостатками данного способа является малая локализация магнитных частиц в опухоли и трудности поддержания фиксированной температуры в различных пространственных областях опухоли, что не приводит к полному излечению пациентов.

Известен способ разрушения раковых опухолей при использовании магнитных наночастиц (Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Andreas Jordan, Regina Scholz, Klaus Maier-Hau, Manfred Johannsen, Peter Wust, Jacek Nadobny, Hermann Schirra, Helmut Schmidt, Serdar Deger, Stefan Loening, Wolfgang Lanksch, Roland Felix. Journal of Magnetism and Magnetic Materials 225(2001)118-126).

Разрушение раковых клеток основано на термолизе магнитных наночастиц, вводимых в опухоль, и индукционного их нагрева в переменном магнитном поле на частотах 50-100 кГц.

Однако данный способ не позволяет локально разрушить раковые клетки и требует мощных электромагнитов с токами в десятки кА на относительно высоких частотах. Кроме того, мощные переменные магнитные поля могут оказывать влияние на процессы движения и диффузии ионов через мембраны клеток, а также порождать индукционные переменные электрические поля, влияющие на работу нейронных сетей в организме человека, связанным с нагревом не только магнитных частиц, но и всех клеток, находящихся в области введения магнитных частиц, и сильной пространственной неоднородностью температуры нагрева как внутри опухоли, так и здоровых тканей, повреждая их и не гарантирует полной гибели опухолевых клеток.

Известен способ близкофокусной рентгенотерапии с суммарной очаговой зоной 100-120 Гр и дистанционной гамма-терапии при лучевом разрушении злокачественных клеток с суммарной очаговой зоной 30-40 Гр (см. Ш.Х. Ганцев. Онкология, М.: Медицинское информационное агентство 2004, с. 190-204; Stephen J., Withrow Е., MacEwen G. Smal animal clinical oncology - 2001, p. 305-308).

Однако данный способ, несмотря на распространенность, обладает следующими недостатками. При лечении некоторых типов злокачественных новообразований, например меланомы, с помощью дистанционной гамма-терапии даже в сочетании с иммунотерапией, как показывает опыт, приводит к 75-90% рецидиву опухолей, а через 2-6 месяцев возникают метастазы.

Известен способ нейрон - захватный селективного разрушения меланомы (см. В.Н. Митин, Н.Г. Козловская, A.M. Арнопольская Нейрон-захватная терапия опухолей ротовой полости у собак. Всероссийский ветеринарный журнал. 2006. №1, с. 9-10).

Способ включает введение в кровь внутривенно L-борфенилаланина, который селективно накапливается в определенной опухоли- меланоме, так как L-фенилаланин является незаменимой аминокислотой, из которой вырабатывается меланин, образующий меланоциты, содержащиеся в клетках меланомы. Таким образом, происходит селективное накопление L-борфенилаланина в клетках меланомы. При облучении пространственной зоны, соизмеримой с опухолью, содержащей L-борфенилаланин, пучком медленных нейронов, получаемых по нейроноводу из ядерного реактора, происходит разрушение клеток меланомы вследствие индуцированного вторичного локального излучения бора.

Однако данный способ обладает следующими недостатками:

1. Радиационное облучение пациентов, которое лишь частично уменьшается при использовании литиевого защитного фартука.

2. Сложная и очень дорогая установка, включающая компактный ядерный реактор, требующий для обслуживания квалифицированных специалистов немедицинского профиля, в частности физиков-ядерщиков.

3. Длительное время облучения пациентов в течение часа при мониторинге сердечно - сосудистой системы.

4. Применение общей анестезии.

Известен способ фотодинамического разрушения опухолей, включающий внутривенное введение фотосенсибилизатора и облучение опухоли непрерывным лазерным излучением с длиной волны, совпадающей с полосой поглощения фотосенсибилизатора (см. Photodynamic therapy / Ed .T.J. Dougherty / J.Clin.Laser Med Surg. 1996, Vol. 14, P219-348; Патент РФ №2184578, МПК A61N 5/06). Селективный фотодинамический механизм разрушения раковых клеток основан на более высокой плотности (контрастности) накопления фотосенсибилизатора в опухолевых клетках по сравнению со здоровыми клетками, что связано с большой плотностью кровеносных сосудов в опухоли по сравнению со здоровой биотканью.

Однако этот контраст для различных опухолей не превышает двух-трех раз. При поглощении лазерного излучения фотосенсибилизатором молекулы красителя переходят в возбужденное электронное состояние и при столкновение с молекулами кислорода, растворенного в биоткани, переводят его из невозбужденного в возбужденное электронное синглетное состояние, с типичным временем жизни несколько микросекунд. За это время молекулы синглетного кислорода, пройдя характерный путь, соизмеримый с размерами клеток при взаимодействии с плазматической мембраной клетки, повреждают ее, и клетка гибнет вследствие некроза. Таким образом, разрушение клеток происходит лишь во время воздействия лазерного излучения в пространственной области облучения лазерным пучком.

Фотодинамический способ при разрушении раковых клеток имеет ряд недостатков. Используемые в практике фотосенсибилизаторы-фталационины, порфирины, хлорины имеют полосы поглощения фотосенсибилизаторов в ультрафиолетовой или видимой области спектра, и используемые лазеры не могут эффективно проникает на глубину, не превышающую нескольких миллиметров. Кроме того, фотодинамический способ обладает малой контрастностью накопления фотосенсибилизаторов в раковых клетках.

Наиболее близкий к заявленному является способ разрушения биоткани, заключающийся во введении в нее этанола с помощью полой игры, отличающийся тем, что вводят 95% этанол в количестве, равном половине объема биоткани, подлежащей разрушению, затем вводят 5 мл 20-30% этанола, после чего проводят нагрев высокочастотным током с одновременным введением 20-30% этанолом в количестве, равном объему биоткани, подлежащей разрушению. Устройство содержит генератор высокочастотного тока с двумя цилиндрическими электродами, расположенными относительно друг друга коаксиально, внутренней в виде полой иглы, через которую в опухоль вводится этанол (Реферат №2006113533 заявки на патент РФ). Недостатком данного способа можно отнести: необоснованность избирательного поглощения этанола раковыми и здоровыми клетками, сложность ввода коаксиального электрода в неоднородные опухоли, для организации равномерного нагрева опухолевых тканей не одинаково расположенных от оголенного конца иглы.

Задачей настоящего изобретения является локальное селективное разрушение злокачественных опухолей, глубоко расположенных в биотканях человека, предварительно избирательно максимально насыщенных в течение 3-5 часов аскорбиновой кислотой и натриевой соли Хлорин-е6 облучаемых после 5 часов максимально насыщенных волновой электромагнитной энергией при одновременном избирательным ВЧ и СВЧ - нагреве опухолей, до температуры 47°С со скоростью нагрева 0,044°С/сек, с целью увеличения выделения в них перекиси водорода, аскорбиновую кислоту вводят за 3 часа до ВЧ и СВЧ облучения, для полного разрушения опухолей фотодинамической гипертермией при минимальном разрушении окружающих здоровых клеток биоткани, за счет контактной теплопередачи от опухолевых к пограничному слою здоровых тканей, нагреваемых при этом до температуры не выше 40°С, после выключения ВЧ и СВЧ энергоподвода от нагретых опухолевых тканей.

Способ инициации гибели опухолевых клеток ВЧ и СВЧ энергией, включающий предварительное насыщение опухолевых клеток растворами натриевой соли Хлорина-е6 и аскорбиновой кислотой принимаемых внутрь человеком, для его максимального накопления в 3- 4 раз выше, чем в опухолевых тканях через 3-5 часов после приема, отличающийся тем, что в течение 3-х дней до лечения человек переводится на белковую диету, для максимального усиления многократного избирательного накопления в опухолевых клетках электронно-ионных растворов натриевой соли Хлорина-е6 и аскорбиновой кислоты, увеличивающих электропроводность опухолевых тканей в сравнение со здоровыми, и по истечении 5 часов после приема натриевой соли Хлорина-е6 и приема аскорбиновой кислоты за 3 часа до обработки проводится избирательная ВЧ и СВЧ электромагнитная гипертермия и фотолюминесценция терапия опухолевых тканей энергией волнового излучения, со скоростью нагрева опухолевых тканей 0,044°С/сек, в течение 235 сек до температуры опухолевых тканей 47°С, при нагреве здоровых тканей не выше 40°С.

Одноразовая мегадоза 3,1 мг/кг натриевой соли Хлорина-е6 вводится внутривенно и одноразовая мегадоза 500 мг аскорбиновой кислоты принимается перорально до ВЧ и СВЧ обработки опухолевых тканей и производится нагрев и гипертермия опухолевых тканей, насыщенных раствором натриевой соли Хлорина-е6 и аскорбиновой кислоты ВЧ и СВЧ энергией волнового излучения, в соответствии с частотой, с глубиной проникновения электромагнитной волны и с глубиной расположения опухолевых тканей, на разрешенных частотах f=13,56 МГц-1100 см, f=27 МГц-545 см, f=40,68 МГц-370 см, f=433,92 МГц - 34,5 см, f=915 МГц - 16,5 см и f=2450 МГц - 6,1 см.

Согласно проведенным исследованиям по ВЧ и СВЧ гипертермии опухолевых тканей, при температуре 47°С граница между зоной некроза и здоровой тканью составляет несколько клеток. Зона разрушения опухолевой ткани включает небольшую зону периферии нормальных здоровых тканей, что исключает движение перерождающих клеток из метастазирования путем их вторичного некроза при контактной теплопередаче. Физическая природа микроволнового излучения - это физическое поле, движущихся электрических зарядов, в электрическом и магнитном полях, представляющих из себя единое электромагнитное поле (ЭМП), характеризующегося частотой колебания f. Отличие только в частоте, с которой происходят электромагнитные колебания соответствующей длиной волны. Биологическое действие ЭМП на живой организм заключается в поглощение энергии биологическими тканями, характеризующимися биофизическими параметрами - диэлектрической постоянной и проводимостью.

Ткани человеческого организма, в связи с большим содержанием в них воды, следует рассматривать как диэлектрики с потерями. При общем облучении тела, энергия ЭМП проникает на глубину 0,5 длины волны. Интенсивность воздействия, экспозиция и диэлектрические потери и проводимость характеризуют избирательное поглощение ЭМП различными тканями при одной и той же плотности ЭМП излучения.

где λ - длина волны,

с - скорость распространения электромагнитной волны,

f - частота колебаний электромагнитного поля.

Частота, с которой происходят колебания электромагнитного поля, в значительной степени влияет на глубину проникновения электромагнитной волны в биологический объект.

Причина заключается в соизмеримости с различными физическими объектами. При f=13,56 МГц, длина волны ЭМП λ=22 м, при f=40,68 МГц, длина волны ЭМП λ=7,4 м, при f=433,92 МГц, длина волны ЭМП λ=69 см, при f=915 МГц, длина волны ЭМП λ=33 см, и при f=2450 МГц, длина волны ЭМП λ=12,2 см. (Таблица 1)

Это определяет выбор оборудования для локальной гипертермии опухолей расположенных на разных глубинах в биологических объектах.

Причина заключается в соизмеримости с различными физическими объектами. При f=13,56 МГц, длина волны ЭМП λ=22 м, при f=40,68 МГц, длина волны ЭМП λ=7,4 м, при f=433,92 МГц, длина волны ЭМП λ=69 см, при f=915 МГц, длина волны ЭМП λ=33 см, и при f=2450 МГц, длина волны ЭМП λ=12,2 см. (Таблица 1)

Это определяет выбор оборудования для локальной гипертермии опухолей расположенных на разных глубинах в биологических объектах.

Опухолевые ткани насыщенные натриевой солью Хлорина-е6 и аскорбиновой кислотой в 3-4 раз превышают ее содержания в здоровых тканях, соответственно, во столько раз отличается и ее электропроводность, т.е. способность опухолевых тканей проводить электрический ток обусловлены наличием в опухолях кислотного электролита, свободных носителей заряда - электрически заряженных частиц, которые под воздействие внешнего электрического поля в толще опухоли, создают ток проводимости.

Еще одним важным параметром диэлектрических и полупроводниковых материалов какими являются опухоли являются диэлектрические потери они служат для определения электрической мощности затрачиваемой на нагрев диэлектриков и полупроводников, находящихся в электромагнитном поле. В справочной литературе для характеристик способности диэлектрика поглощать энергию переменного электрического поля использует tgδ угла диэлектрических потерь и диэлектрической проницаемостью ε. Физический смысл tgδ состоит в наличии диэлектрических потерь приводящих к сдвигу фазы между током и напряжением где угол между ними становится меньше 90° на величину, количественные потери волновой энергии оказываются пропорциональны диэлектрическим потерям ε, tgδ.

Потери на электропроводность в диэлектриках имеющих низкое удельное объемное сопротивление, например, относится абсолютно химически чистая вода. В природе вода является прекрасным растворителем и хорошо растворяет кислоты и по этому электропроводность такой воды имеет большое количество заряженных ионов, которые под воздействием переменного электрического поля, начинают двигаться в такт изменяющемуся волновому электромагнитному полю, преобразуя электрическую энергию в тепловую. Опухолевые ткани максимально насыщенные натриевой солью Хлорина-е6 и АК, в этом случае являются полупроводниками, содержащими в несколько раз больше заряженных ионов в сравнении с окружающими здоровыми тканями и соответственно их скорость нагрева во много раз выше чем окружающих здоровых тканей за одно и тоже время. В таких опухолевых тканях также дополнительно наблюдаются релаксационные диэлектрические потери обусловленные поворотом полярных молекул воды в направление силовых линий электрического поля. Возникает внутримолекулярное трение, которое еще раз усиливает нагрев опухолевых тканей.

Удельная мощность диэлектрических потерь, отнесенных к единице объема диэлектрика, называют диэлектрическими потерями, которые можно рассчитать по формуле:

Руд=E2f εtgδ,10-2 Вт/см3.

Данное соотношение определяет степень нагрева различных структур опухолевых и здоровых тканей биологического вещества в электрическом поле. Для этого необходимо знать ε и tgδ опухолевых и здоровых тканей, и таким образом очень точно рассчитать скорость нагрева до заданной температуры нагрева опухолевых и окружающих здоровых тканей в однородном электромагнитном поле (ЭМП).

Избирательное поглощение натриевой солью Хлорина-е6 и АК опухолевыми тканями приводит к их избирательному нагреву опухолей и электромагнитной фотолюминесценции до более высокой температуры 50°С при нагреве за это же время, окружающих их здоровых тканей до температуры 40°С, что приводит к инактивации опухолевых тканей и их последующим разрушением, которые потом, в течении нескольких дней, безболезненно выводятся организмом. Скорость нагрева волновой энергией электромагнитного поля зависит от мощности диэлектрических генераторов и магнетронов.

Зная удельную мощность Руд, выделяемую в биологическом объекте с учетом ε и tgδ опухолевых и здоровых тканей, можно очень точно рассчитать скорость нагрева до заданной температуры нагрева опухолевых и окружающих здоровых тканей в однородном электромагнитном поле (ЭМП), по формуле:

Руд оп=E2f εoпtgoпδ,10-12 Вт/см3

При колебательной мощности генераторов электромагнитного поля 700-850 Ватт можно нагреть 200-300 грамм опухолевых тканей до температуры 60°С за 2-3 минуты, удельная мощность, выделяемая в опухолях, и температура их нагрева определяется по формуле:

где Со - теплоемкость опухоли, кал;

m - масса опухоли в граммах;

ΔТ - разность температур нагрева;

t - время нагрева, сек.

Данная формула позволяет подобрать необходимую общую удельную мощность Руд об для ВЧ и СВЧ нагрева опухолевых тканей Руд оп до заданной разницы температур нагрева и удельную мощность Руд зд выделяемую, в здоровых тканях определяемую по общей формуле:

Руд об=Руд оп+Руд зд

Тогда удельная мощность в области облучения с учетом диэлектрических свойств:

Руд об=(E2f εоп tgδоп+E2f εзд tgδзд)10-12

Зная диэлектрические свойства опухолевых εоп tgδоп и здоровых тканей εзд tgδзд, можно расчетным путем определить температуры их нагрева ΔT до необходимых заданных температур и определить время нагрева t и общую удельную мощность Руд об, облучаемой области. (Таблица 2)

Аналогично, зная диэлектрические параметры εtgδ и удельную плотность опухолевых тканей насыщенных электрофотосенсибилизаторами в биологических объектах γ гр/см3, можно расчетным путем найти удельную мощность, выделяемую в опухолевых тканях Руд оп, и определить заданную температуру и рассчитать время их нагрева ВЧ и СВЧ энергией, по вышеприведенным формулам.

Похожие патенты RU2739252C2

название год авторы номер документа
Способ инициации гибели опухолевых клеток натриевой солью Хлорина-е, янтарной кислотой и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2723884C2
Способ инициации гибели опухолевых клеток натриевыми солями Хлорина-е и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2724327C2
Способ инициации гибели опухолевых клеток аскорбиновой и янтарной кислотами и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2723881C2
Способ инициации гибели опухолевых клеток натриевой солью гематопорферина, аскорбиновой кислотой и ВЧ и СВЧ энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2726610C2
Способ инициации гибели опухолевых клеток натриевыми солями хлорина-e, хлорина-p и пурпурина-5 и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2724326C2
Способ инициации гибели опухолевых клеток демитилглюкаминовой кислотой Хлорина-e и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2723882C2
Способ инициации гибели опухолевых клеток аскорбиновой и фолиевой кислотами и ВЧ и СВЧ энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2723489C2
Способ инициации гибели опухолевых клеток натриевой солью гематопорферина, янтарной кислотой и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2723885C2
Способ инициации гибели опухолевых клеток аскорбиновой кислотой и ВЧ и СВЧ энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2736356C2
Способ инициации гибели опухолевых клеток гидроксиалюминия трисульфофталоцианином и аскорбиновой кислотой и ВЧ- и СВЧ-энергией волнового излучения 2018
  • Цугленок Николай Васильевич
RU2723490C2

Реферат патента 2020 года Способ инициации гибели опухолевых клеток Хлорином-e, аскорбиновой кислотой и ВЧ- и СВЧ-энергией волнового излучения

Изобретение относится к медицине и предназначено для индукции гибели опухолевых клеток в живых биологических объектах высокоэлектропроводящим раствором натриевой соли Хлорина-е6 2-3 мг/кг массы тела и аскорбиновой кислотой 200-300 мг электромагнитной ВЧ- и СВЧ-энергией фотоволнового излучения, известное как ВЧ- и СВЧ-гипертермия. Описан способ инициации гибели опухолевых клеток ВЧ- и СВЧ-энергией, предназначенный для локального лечения онкологических больных, имеющих опухолевые ткани, для их гипертермии во всех органах организма человека, характеризующийся тем, что до лечения человек в течение 3 дней переводится на белковую диету для максимального насыщения онкоклеток электронно-ионным раствором натриевой соли Хлорина-е6 внутривенно в мегадозе 3,1 мг/кг веса человека и аскорбиновой кислоты перорально в мегадозе 500 мг аскорбиновой кислоты принимается перорально, для их максимального накопления в опухолевых тканях, соответственно в 3-4 раза выше, чем в здоровых, по истечении 72 часов после приема натриевой соли Хлорина-е6 и аскорбиновой кислоты за 4 часа до обработки проводится избирательная гипертермия опухолевых тканей СВЧ-энергией в соответствии с глубиной их расположения и глубиной проникновения электромагнитной волны в тело человека 6,1 сантиметров, при разрешенной частоте f=2450 МГц, с общей скоростью нагрева опухолевых тканей на разрешенной частоте 0.010°С/сек, в течение 216 сек до температуры нагрева опухолевых тканей 58°С, при нагреве здоровых тканей не выше 40°С. Технический результат – описанный способ приводит к термической гибели опухолевых тканей за счет высокого диэлектрического контраста опухоли и увеличения разницы ее проводимости (диэлектрических потерь) относительно окружающих здоровых биологических тканей, достигающей многократной величины для различных опухолей. Это позволяет при проведении флюоресцентной диагностики уточнять границы опухолей и проводить одновременную гипертермию опухолевых клеток электромагнитной ВЧ- и СВЧ-энергией фотоволнового излучения и выявлять, и разрушать, таким образом, даже неопределяемые опухолевые образования, находящиеся в глубоких слоях биологического объекта. 2 табл.

Формула изобретения RU 2 739 252 C2

Способ инициации гибели опухолевых клеток ВЧ- и СВЧ-энергией, предназначенный для локального лечения онкологических больных, имеющих опухолевые ткани, для их гипертермии во всех органах организма человека, характеризующийся тем, что до лечения человек в течение 3 дней переводится на белковую диету для максимального насыщения онкоклеток электронно-ионным раствором натриевой соли Хлорина-е6 внутривенно в мегадозе 3,1 мг/кг веса человека и аскорбиновой кислоты перорально в мегадозе 500 мг аскорбиновой кислоты принимается перорально, для их максимального накопления в опухолевых тканях, соответственно в 3-4 раза выше, чем в здоровых, по истечении 72 часов после приема натриевой соли Хлорина-е6 и аскорбиновой кислоты за 4 часа до обработки проводится избирательная гипертермия опухолевых тканей СВЧ-энергией в соответствии с глубиной их расположения и глубиной проникновения электромагнитной волны в тело человека 6,1 сантиметров, при разрешенной частоте f=2450 МГц, с общей скоростью нагрева опухолевых тканей на разрешенной частоте 0.010°С/сек, в течение 216 сек до температуры нагрева опухолевых тканей 58°С, при нагреве здоровых тканей не выше 40°С.

Документы, цитированные в отчете о поиске Патент 2020 года RU2739252C2

RU 2006113533 A, 20.11.2007
СПОСОБ ЛЕЧЕНИЯ ОПУХОЛЕЙ 2000
  • Шаталин И.А.
  • Никитин А.А.
  • Кригер А.Е.
RU2174021C1
СПОСОБ ИЗБИРАТЕЛЬНОЙ ДЕСТРУКЦИИ РАКОВЫХ КЛЕТОК 1996
  • Загускин Сергей Львович
  • Ораевский Виктор Николаевич
  • Рапопорт Семен Исаакович
RU2106159C1
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ СУБЪЕКТОВ, СТРАДАЮЩИХ ЗЛОКАЧЕСТВЕННЫМИ ОПУХОЛЯМИ 2010
  • Белый Юрий Александрович
  • Кукушкин Николай Ильич
  • Склифас Алла Николаевна
  • Темнов Андрей Александрович
  • Терещенко Александр Владимирович
RU2440158C2
CA 2699782 C2, 11.04.2017
US 4622952 A, 18.11.1986
А.Л.Акопов, Н.В.Казаков.А.А.Русанов, А.Карлсон "Механизмы фотодинамического воздействия при лечении онкологических больных", Фотодинамическая терапия и фотодиагностика; номер 2, 2015.

RU 2 739 252 C2

Авторы

Цугленок Николай Васильевич

Даты

2020-12-22Публикация

2018-07-17Подача