Способ непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины и устройство для его осуществления Российский патент 2020 года по МПК E21B23/14 

Описание патента на изобретение RU2724723C1

Изобретение относится к нефтяной промышленности и может быть использовано при геофизических исследованиях нефтяных скважин, в частности для контроля параметров флюида скважины в процессе освоения.

При освоении скважин, после ремонтных работ или при очистке забоя и призабойной зоны скважины от продуктов реакции, после применения технологий с химическими воздействиями возникает необходимость постоянного контроля параметров извлекаемого флюида скважины. Традиционный способ контроля методом анализа проб поднятой на поверхность жидкости в лабораторных условиях связан с определенной цикличностью и с высокой стоимостью услуг.

Известен способ контроля параметров скважинного флюида путем спуска автономного прибора в составе свабного оборудования (патент RU № 171134, МПК Е21В 23/14, Е21В 43/18, Е21В 47/01, опубл. 30.05.2017 г., Бюл. № 16).

Недостатками этого способа являются отсутствие возможности постоянного визуального контроля в процессе свабирования и необходимость демонтажа автономного прибора для снятия его показаний.

Наиболее близким аналогом является способ исследования скважины с целью контроля параметров скважинного флюида применением специального модуля контроля свабирования КС 7.43-120/60 (Каталог выпускаемого оборудования ОАО Геотрон).

Недостатком способа является частая потеря информации от модуля контроля из-за того, что питание модуля контроля, включенного в состав скважинного свабного оборудования, осуществляется через специализированный свабный силовой кабель и имеет место потеря жилы в связке кабель - модуль контроля при резких увеличениях нагрузки на свабную подвеску и кабельную заделку. Это приводит к потере текущей информации и рабочего времени на производство дополнительных подготовительных работ. Поэтому применение модуля контроля приемлемо только при небольших объемах работ и сводит на нет экономический эффект от совмещения геофизических исследований с процессом свабирования, так как нужно производить частые перезаправки кабельного наконечника с полной заделкой элементов электрической цепи кабеля. При этом модуль контроля, работая в тяжелых условиях, не определяет параметры текущего потока, а фиксирует параметры окружающей его неизменной жидкости от начала подъема сваба до завершения подъема.

Известно устройство для измерения внутрискважинных параметров (патент RU № 75690, МПК7 Е21В 47/00, опубл. 20.08.2008 г., Бюл. № 23), которое содержит корпус, выполненный с возможностью спуска в скважинную камеру и возможностью установки в нем, по меньшей мере, одного глубинного прибора. Особенностью является то, что указанный корпус имеет сплошное основание, в котором выполнено, по меньшей мере, одно посадочное место, предназначенное для установки в нем глубинного прибора.

Недостатком данного устройства применительно к исследованию параметров скважинного флюида в процессе свабирования применением геофизического прибора неавтономного принципа действия является отсутствие возможности обеспечения канала связи для присоединения к регистрирующей аппаратуре.

Наиболее близким по технической сущности к предлагаемому является свабный контейнер для автономных приборов (АП) КС 00-01-00 (паспорт технического устройства ПС-2012 «Контейнер свабный КС-00-01»), который включается в компоновку глубинной части свабного оборудования посредством штатных быстроразъемных соединений (БРС) на его концах. Свабный контейнер имеет полый корпус для размещения в нем АП и переходники: снизу – для присоединения посредством БРС к мандрели сваба; сверху – также посредством БРС к грузу или наконечнику кабеля. Для фиксации АП предусмотрены пружинные амортизаторы, а для обеспечения гидравлической связи внутренней полости контейнера с внутрискважинным пространством на боковой поверхности корпуса имеются каналы.

Недостатками устройства являются отсутствие возможности применения геофизических приборов, работающих в режиме реального времени с визуальным и регистрируемым контролем параметров извлеченного скважинного флюида, а также необходимость перерыва операции освоения скважины для доступа к контейнеру для извлечения прибора.

Техническими задачами предложения являются повышение надежности, эффективности контроля и точности измеряемых параметров извлекаемого флюида в процессе освоения скважин, при этом информация от геофизического прибора превращается в непрерывный визуально контролируемый и электронно регистрируемый поток, операции освоения скважины не прекращаются.

Технические задачи решаются способом непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины, включающим установку геофизического прибора.

Новым является то, что на устье скважины устанавливают дополнительный лубрикатор для геофизического прибора, присоединяют его одним концом к тройнику основного устьевого лубрикатора, применяемому при освоении скважины, и вводят дополнительный лубрикатор в линию проточной системы отвода извлеченного флюида скважины, присоединяя другой его конец через тройник к линии, устанавливают в дополнительном лубрикаторе геофизический прибор и подключают его к регистрирующей аппаратуре станции с помощью дополнительного кабеля.

Технические задачи решаются устройством дополнительного лубрикатора для непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины, включающим полый корпус для размещения в нем геофизического прибора, быстроразъемные соединения, наконечники кабеля и кабель.

Новым является то, что диаметр полого корпуса увеличен с учетом сохранения канала протока извлеченного флюида и нахождения в нем геофизического прибора и равен величине 1,2⋅Dосн, одно быстроразъемное соединение расположено в одном конце полого корпуса, второе быстроразъемное соединение расположено на тройнике на другом конце полого корпуса в месте присоединения дополнительного лубрикатора к линии проточной системы отвода поднятого на поверхность флюида скважины, в другом конце полого корпуса расположен элемент герметизации ввода кабеля, состоящий из кабельного наконечника внутреннего, кабельного наконечника внешнего и герметизирующего элемента, расположенного между кабельными наконечниками.

На фиг. 1 изображена схема осуществления способа непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины.

На фиг. 2 показано устройство дополнительного лубрикатора для осуществления способа непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины.

Сущность изобретения заключается в следующем.

Способ непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины включает установку геофизического прибора. На устье скважины устанавливают дополнительный лубрикатор 1 для геофизического прибора 2 (фиг. 1). Дополнительный лубрикатор 1 для геофизического прибора 2 присоединяют одним концом к тройнику 3 основного устьевого лубрикатора 4, применяемому при освоении скважины. Вводят дополнительный лубрикатор 1 в линию проточной системы отвода извлеченного флюида скважины, присоединяя другой его конец через тройник 5 к линии. Устанавливают в дополнительном лубрикаторе 1 геофизический прибор 2 и подключают его к регистрирующей аппаратуре станции с помощью дополнительного кабеля 6.

Дополнительный лубрикатор для непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины (фиг. 2) включает полый корпус 1 для размещения в нем геофизического прибора 2, быстроразъемные соединения 9 и 10, наконечники кабеля 11, 12 и кабель 6.

Диаметр полого корпуса 1 увеличен с учетом сохранения канала протока извлеченного флюида и нахождения в нем геофизического прибора 2 и равен 1,2⋅Dосн

D = 1,2⋅Dосн,

где Dосн – диаметр корпуса основного лубрикатора 4, применяемого при освоении скважины.

Одно быстроразъемное соединение 9 расположено в одном конце полого корпуса 1. Второе быстроразъемное соединение 10 расположено на тройнике на другом конце полого корпуса 1 в месте присоединения дополнительного лубрикатора к линии проточной системы отвода поднятого на поверхность флюида скважины. В другом конце полого корпуса 1 расположен элемент герметизации ввода кабеля, состоящий из кабельного наконечника внутреннего 11, кабельного наконечника внешнего 12 и герметизирующего элемента 13, расположенного между кабельными наконечниками 11 и 12.

Достигнутым техническим результатом предлагаемых способа и устройства является обеспечение постоянного контроля параметров извлеченного скважинного флюида геофизическими приборами различных модификаций и назначений в процессе освоения скважины в герметично закрытом, но в проточном режиме. При этом освоение скважины производится со своим оборудованием и по своим технологиям.

Способ осуществляют в следующей последовательности.

На устье скважины производят подготовку и начинают монтаж оборудования для освоения скважины, собирают компоновку глубинного свабного оборудования, устанавливают основной лубрикатор 4.

Также на устье скважины устанавливают дополнительный лубрикатор 1 для геофизического прибора 2 (фиг. 1). Дополнительный лубрикатор 1 для геофизического прибора 2 присоединяют одним концом к тройнику 3 основного устьевого лубрикатора 4, применяемому при освоении скважины. Вводят дополнительный лубрикатор 1 в линию проточной системы отвода извлеченного флюида скважины, присоединяя другой его конец через тройник 5 к линии. Далее устанавливают в дополнительном лубрикаторе 1 геофизический прибор 2 и подключают его к регистрирующей аппаратуре станции с помощью дополнительного кабеля 6.

Затем производят освоение скважины, производя работы согласно регламенту и соответствующим технологиям. Например, спуская на силовом геофизическом кабеле 7 сваб 8.

При этом контроль параметров извлекаемого скважинного флюида осуществляется беспрерывно по геофизическому прибору 2, установленному в дополнительном лубрикаторе 1 и дополняется информацией процесса освоения, например, показаниями датчика натяжения кабеля 7, данными об уровне жидкости при каждом спуске, глубине и количестве спусков сваба 8. При необходимости глубинное свабное оборудование может укомплектоваться автономным прибором по известной и упомянутой технологии. А данными исследования могут дополнить основную информацию после подъема и изъятия автономного прибора.

Устройство работает следующим образом.

Во время монтажа оборудования скважины к устьевому тройнику основного лубрикатора сначала присоединяют, используя быстроразъемное соединение 9, один конец полого корпуса 1 дополнительного лубрикатора (фиг. 2), а затем, используя быстроразъемное соединение 10, находящееся на тройнике на другом конце полого корпуса 1, присоединяют полый корпус 1 дополнительного лубрикатора к линии проточной системы отвода поднятого на поверхность флюида скважины. Далее устанавливают в полом корпусе 1 дополнительного лубрикатора геофизический прибор 2. Затем кабельный наконечник внутренний 11 присоединяют к геофизическому прибору 2, устанавливают герметизирующий элемент 13 и кабельный наконечник внешний 12, присоединяют кабель 6 через кабельный наконечник 12. Геофизический прибор 2 присоединяют к регистрирующей аппаратуре станции с помощью кабеля 6.

Начинают процесс освоения скважины методом свабирования. При этом ведется визуальный контроль на мониторе и компьютерная регистрация исследуемых параметров извлеченного скважинного флюида. При необходимости эти материалы посылаются на срочную интерпретацию данных для последующего принятия оперативных решений по производству работ.

Достигнутым техническим результатом предлагаемых способа и устройства является обеспечение постоянного контроля параметров извлеченного скважинного флюида геофизическими приборами различных модификаций и назначений в процессе освоения скважины в герметично закрытом, но в проточном режиме. При этом освоение скважины производится со своим оборудованием и по своим технологиям.

Похожие патенты RU2724723C1

название год авторы номер документа
СПОСОБ ОСВОЕНИЯ И ЭКСПЛУАТАЦИИ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Хисамов Раис Салихович
  • Харисов Ринат Гатинович
  • Мухамадиев Рамиль Сафиевич
  • Махмутов Фарид Анфасович
  • Вильданов Рафаэль Расимович
  • Ахметшин Шамсияхмат Ахметович
RU2503798C2
СПОСОБ ИСПЫТАНИЯ СКВАЖИН И КОНТРОЛЬ В ПРОЦЕССЕ СВАБИРОВАНИЯ 1999
  • Нуретдинов Я.К.
  • Кудашев П.М.
  • Нигматуллин Р.К.
  • Иванов В.А.
  • Хайретдинов Р.Р.
RU2166077C2
Оборудование для свабирования скважин по эксплуатационной колонне 2017
  • Басос Георгий Юрьевич
  • Валовский Константин Владимирович
RU2669966C1
СПОСОБ ОСВОЕНИЯ СКВАЖИН И ИСПЫТАНИЯ ПЛАСТОВ В ПРОЦЕССЕ СВАБИРОВАНИЯ (ВАРИАНТЫ) 2007
  • Зарипов Ринат Раисович
  • Хакимов Виктор Салимович
  • Адиев Айрат Радикович
RU2341653C1
СПОСОБ ВТОРИЧНОГО ВСКРЫТИЯ ПЛАСТОВ НА ДЕПРЕССИИ СО СПУСКОМ ПЕРФОРАТОРА ПОД ГЛУБИННЫЙ НАСОС И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2014
  • Савич Анатолий Данилович
  • Черных Ирина Александровна
  • Шадрунов Антон Анатольевич
  • Шумилов Александр Владимирович
RU2571790C1
Способ геофизического исследования горизонтальных скважин с наклонным устьем 2023
  • Ахметшин Шамсияхмат Ахметович
  • Амерханов Марат Инкилапович
  • Аслямов Нияз Анисович
  • Мухамадиев Рустем Рамилевич
  • Асадуллин Эльдар Рифович
  • Саттаров Алмаз Ильшатович
RU2814136C1
Поворотный узел устьевого лубрикатора 2023
  • Ахметшин Шамсияхмат Ахметович
  • Мухамадиев Рустем Рамилевич
  • Амерханов Марат Инкилапович
  • Аслямов Нияз Анисович
  • Асадуллин Эльдар Рифович
  • Гареев Дамир Авхатович
  • Саттаров Алмаз Ильшатович
  • Хайбуллин Ильмир Фазирович
RU2814405C1
УСТРОЙСТВО ДЛЯ СПУСКА ГЕОФИЗИЧЕСКОГО КАБЕЛЯ «ЖЕСТКОЙ» КОНСТРУКЦИИ В СКВАЖИНУ ПОД БОЛЬШИМ ДАВЛЕНИЕМ 2020
  • Махмутов Фарит Анфасович
  • Киамов Айрат Хамисович
  • Назмутдинов Альберт Сабурович
  • Ханипов Ринат Мударисович
  • Ахметшин Шамсияхмат Ахметович
RU2736743C1
СПОСОБ ЭКСПРЕСС-ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА, ПРИМЕНЯЕМЫЙ ПРИ ОСВОЕНИИ СКВАЖИНЫ 2017
  • Лысенков Алексей Владимирович
  • Андаева Екатерина Алексеевна
  • Ханнанов Марс Талгатович
RU2673093C2
Внутрилубрикаторный проталкиватель геофизического кабеля 2023
  • Ахметшин Шамсияхмат Ахметович
  • Мухамадиев Рустем Рамилевич
  • Амерханов Марат Инкилапович
  • Аслямов Нияз Анисович
  • Асадуллин Эльдар Рифович
  • Гареев Дамир Авхатович
  • Саттаров Алмаз Ильшатович
  • Хайбуллин Ильмир Фазирович
RU2822847C1

Иллюстрации к изобретению RU 2 724 723 C1

Реферат патента 2020 года Способ непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины и устройство для его осуществления

Изобретение относится к нефтяной промышленности и может быть использовано при геофизических исследованиях нефтяных скважин, в частности для контроля параметров флюида скважины в процессе освоения. Техническим результатом является обеспечение постоянного контроля параметров извлеченного скважинного флюида геофизическими приборами. Способ непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины включает установку геофизического прибора, установку дополнительного лубрикатора для геофизического прибора. Дополнительный лубрикатор для геофизического прибора присоединяют одним концом к тройнику основного устьевого лубрикатора, применяемому при освоении скважины. Вводят дополнительный лубрикатор в линию проточной системы отвода извлеченного флюида скважины, присоединяя другой его конец через тройник к линии. Устанавливают в дополнительном лубрикаторе геофизический прибор и подключают его к регистрирующей аппаратуре станции с помощью дополнительного кабеля. Дополнительный лубрикатор включает полый корпус для размещения в нем геофизического прибора, быстроразъемные соединения, наконечники кабеля и кабель. Диаметр полого корпуса увеличен с учетом сохранения канала протока извлеченного флюида и нахождения в нем геофизического прибора и равен 1,2⋅Dосн. Одно быстроразъемное соединение расположено в одном конце полого корпуса. Второе быстроразъемное соединение расположено на тройнике на другом конце полого корпуса в месте присоединения дополнительного лубрикатора к тройнику линии проточной системы отвода поднятого на поверхность флюида скважины. В другом конце полого корпуса расположен элемент герметизации ввода кабеля, состоящий из кабельного наконечника внутреннего, кабельного наконечника внешнего и герметизирующего элемента, расположенного между кабельными наконечниками. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 724 723 C1

1. Способ непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины, включающий установку геофизического прибора, отличающийся тем, что на устье скважины устанавливают дополнительный лубрикатор для геофизического прибора, присоединяют его одним концом к тройнику основного устьевого лубрикатора, применяемому при освоении скважины, и вводят дополнительный лубрикатор в линию проточной системы отвода извлеченного флюида скважины, присоединяя другой его конец через тройник к линии, устанавливают в дополнительном лубрикаторе геофизический прибор и подключают его к регистрирующей аппаратуре станции с помощью дополнительного кабеля.

2. Устройство дополнительного лубрикатора для непрерывного контроля параметров извлекаемого флюида в процессе освоения скважины, включающее полый корпус для размещения в нем геофизического прибора, быстроразъемные соединения, кабельные наконечники и кабель, отличающееся тем, что диаметр полого корпуса увеличен с учетом сохранения канала протока извлеченного флюида и нахождения в нем геофизического прибора и равен величине 1,2⋅Dосн, одно быстроразъемное соединение расположено в одном конце полого корпуса, второе быстроразъемное соединение расположено на тройнике на другом конце полого корпуса в месте присоединения дополнительного лубрикатора к линии проточной системы отвода поднятого на поверхность флюида скважины, в другом конце полого корпуса расположен элемент герметизации ввода кабеля, состоящий из кабельного наконечника внутреннего, кабельного наконечника внешнего и герметизирующего элемента, расположенного между кабельными наконечниками.

Документы, цитированные в отчете о поиске Патент 2020 года RU2724723C1

Способ изготовления минерального войлока 1947
  • Горяинов К.Э.
SU75690A1
АГРЕГАТ ДЛЯ ОБРАБОТКИ КОРДНЫХ ШНУРОВ ИЛИ НИТЕЙ 0
  • Р. И. Борцов, В. Я. Масловский Р. М. Колдашов
SU171374A1
СПОСОБ КОНТРОЛЯ ЗАБОЙНЫХ ПАРАМЕТРОВ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ 2013
  • Фурсин Сергей Георгиевич
RU2643380C2
Лубрикаторное устройство для исследования скважин 1984
  • Савостьянов Николай Андреевич
  • Шагинян Альберт Семенович
  • Асан-Джалалов Алексей Георгиевич
  • Свинин Александр Иванович
  • Эпшицкий Ефим Аронович
  • Жуков Игорь Викторович
SU1541377A1
Лубрикатор для спуска глубинного оборудования в скважину 1984
  • Айзикович Олег Марьянович
  • Сергеев Александр Иванович
  • Меркулов Игорь Львович
SU1249152A1
US 5435395 A1, 25.07.1995
US 9523790 B1, 20.12.2016.

RU 2 724 723 C1

Авторы

Миннуллин Рашит Марданович

Галимов Алмаз Рустамович

Ахметшин Шамсияхмат Ахметович

Даты

2020-06-25Публикация

2020-02-10Подача