Устройство относится нефтепромысловой геофизике, а именно к аппаратуре акустического каротажа скважин.
Известно устройство для реализации способа дистанционного тестирования для приборов акустического каротажа в полевых условиях (патент РФ №2521144, G01V 1/40, 2013.), обеспечивающее сравнительный анализ спектральных характеристик акустических зондов, получаемых в процессе работы скважинного прибора, с эталонными показателями спектральных характеристик предварительного тестирования прибора, хранящихся в базе данных. По результатам сравнительного анализа полученных спектральных характеристик с протоколами базы данных компьютера делается вывод о возможных неполадках в работе зондов прибора.
Известное устройство обеспечивает возможность дистанционного контроля работы скважинных зондов в процессе работы и экстренного принятия мер в случае их неполадки. К недостатку следует отнести недостаточную точность измерения параметров, поскольку на контролируемые акустические сигналы оказывают влияние скважинные шумы. А на сигналы, передаваемые по геофизическому кабелю, оказывают влияние параметры самого кабеля и окружающей скважинной среды.
Задачей настоящего изобретения является повышение точности контроля и передачи измеряемых параметров в реальном режиме времени, а также процесса диагностики скважинного акустического прибора в реальном режиме времени и повышение надежности и эффективности проведения геофизических исследований.
Поставленная задача решается следующим образом.
В приборе акустическом скважинном с встроенной системой диагностирования, содержащем систему излучателей и приемников акустических сигналов, блок телеметрии, блок АЦП, микроконтроллер и наземный блок управления, дополнительно установлены блоки диагностики в виде идентичных независимых датчиков по числу излучателей и приемников акустических сигналов, каждый из которых установлен на одном валу в непосредственной близости со своим излучателем и приемником акустических сигналов и блок анализа данных, входящего в состав скважинного блока управления и связанного посредством микроконтроллера с независимыми датчиками.
Существенным отличием предложенной конструкции от известных устройств является следующее:
- оснащение каждого из излучателей и приемников акустических сигналов своим независимым датчиком позволяет непосредственно в процессе геофизических исследований обеспечить контроль и коррекцию работы излучателей и приемников акустических сигналов и своевременное принятие необходимых мер при сбое работы излучателя и/или приемника, повышая тем самым достоверность работы устройства;
- наличие дополнительного блока анализа данных, входящего в состав скважинного блока управления, позволяет посредством микроконтроллера проводить цикличный опрос каждого из независимых датчиков с заданным интервалом времени, осуществляя тем самым диагностику работы прибора акустического скважинного в реальном режиме времени без влияния на конечный результат параметров геофизического кабеля (как у прототипа), что также повышает точность измерений
- установка каждого из независимых датчиков на одном валу в непосредственной близости со своим излучателем и приемником акустического сигнала позволяет избежать влияния акустических шумов на чистоту контролируемых акустических сигналов и тем самым повышает точность измерений.
- возможность применения независимого датчика как в режиме излучения, так и в режиме приема акустических сигналов позволяет в случае сбоя работы какого либо из излучателей или приемников акустических сигналов продублировать работу вышедшего из строя излучателя (приемника) независимым датчиком, установленным с ним на одном валу, что расширяет функциональные возможности применяемого блока диагностики и обеспечивает надежность работы прибора акустического скважинного с встроенной системой диагностирования.
В совокупности указанные признаки соответствуют критерию изобретения «существенные отличия»
Наличие в предложенной конструкции прибора акустического скважинного с встроенной системой диагностирования дополнительных независимых датчиков, устанавливаемых на одном валу в непосредственной близости с излучателями и приемниками акустических сигналов, не вносит существенных изменений в конструкцию прибора, сохраняя надежность конструкции. При этом для ее практической реализации не требуется специальных материалов и оборудования, что соответствует критерию изобретения «промышленная применимость».
На фиг 1 приведен вариант прибора акустического скважинного с встроенной системой диагностирования.
На фиг. 2 приведен вариант структурной схемы работы акустического скважинного прибора с встроенной системой диагностики.
На фиг. 3 показан независимый датчик со своим излучателем акустического сигнала.
Предложенный прибор акустический скважинный с встроенной системой диагностирования (далее - устройство) содержит корпус, в котором установлены излучатель 1 и приемники 2 акустических сигналов, независимые датчики 3-4 и скважинный блок управления 5, связанный с наземным блоком управления 15 (фиг. 1).
Датчики 3 и 4 идентичны и выполнены на основе пьезоэлементов, и в зависимости от электрической схемы подключения могут использоваться в качестве излучателей либо в качестве приемников акустических сигналов. Каждый из датчиков 3-4 установлен на одном валу 6 в непосредственной близости со своим излучателем 1 или приемником 2 и закреплен на нем посредством корпуса с гайкой 7 (фиг. 2). При этом датчик 3, установленный на валу с излучателем 1, работает как излучатель, а датчики 4, установленные на валах с приемниками 2, работают как приемники акустических сигналов.
Излучатель 1, приемники 2 и независимые датчики 3, 4 электрически связаны с скважинным блоком управления 5, в состав которого входят усилитель нормирующий УН 8, коммутатор высоковольтный KB 9, аналого-цифровой преобразователь АЦП 10, формирователь высокого напряжения ФВН 11, микроконтроллер МК 12, блок анализа данных БАД 13 с записанными в нем нормированными значениями излучателя 1 и приемников 2, блок телеметрии БТ 14. (фиг. 3)
Устройство работает следующим образом.
В процессе работы на скважине оператором с наземного блока управления 15 подается сигнал активации основного режима работы устройства. От наземного блока управления 15 сигнал по каналу связи поступает на блок телеметрии 14 скважинного блока управления 5. Блок телеметрии 14 запускает работу основных систем устройства и одновременно передает команду на микроконтроллер 12, который включает в работу формирователь высокого напряжения 11 и коммутатор высоковольный 9, который в свою очередь подает высоковольтное напряжение на преобразователи АЦП 10. Излучатель 1 в постоянном режиме генерирует упругие волны, а приемники 2 принимают отраженные волновые пакеты, которые после обработки нормирующим усилителем 8 через АЦП 10 поступают на микроконтроллер 12, где фиксируются и передаются в наземный блок управления 15. В заданный период времени работы устройства по сигналу от микроконтроллера 12, формирователь высокого напряжения И подает высоковольтное напряжение на независимый датчик 3. Генерируемый датчиком 3 волновой пакет поступает на нормирующий усилитель 7, преобразовывается и через микроконтроллер 12 поступает в блок анализа данных 13. Блок анализа данных 13 усредняет и анализирует полученные данные, сравнивая их с нормированными значениями излучателя 1 и приемников 2. В случае отклонения полученных данных от нормированных значений с блока анализа данных 13 на микроконтроллер 12 поступает сигнал о возможной неисправности. Микроконтроллер 12 формирует команду на блок телеметрии 14, связанный с наземным блоком управления 15. На наземный блок управления 15 поступают информация, на основе которой оператор может внести коррекцию в работу блока телеметрии 14 - усилить или ослабить уровень приема сигнала посредством нормирующего усилителя 8 или изменить амплитуду высоковольтного напряжения с помощью формирователя высокого напряжения 11.
При этом возможность использования идентичных независимых датчиков блока диагностики как в качестве излучателей, так и в качестве приемников акустических сигналов, в случае существенного отклонения параметров какого либо излучателя 1 или приемника 2 акустических сигналов от нормируемых значений, позволяет оператору по команде с наземного бока управления 15 обеспечить возможность дублирования работы неисправного излучателя 1 или приемника 2 закрепленным с ним на одном валу независимым датчиком, что существенно расширяет функциональные возможности блока диагностики и повышает надежность работы устройства в целом..
Таким образом, наличие в конструкции прибора акустического скважинного с встроенной системой диагностирования дополнительного блока диагностики повышает точность автоматического контроля работы устройства и обеспечивает быструю коррекцию его работы в реальном режиме времени, упрощает работу оператора и исключает влияние «человеческого фактора» на результаты измерений, в отличие от аналога.
На основании изложенного считаем, что поставленная задача изобретения решена в полном объеме.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ БЕСКОНТАКТНОЙ ТЕЛЕМЕТРИИ СКВАЖИН И ТЕЛЕМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2584168C1 |
СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО КАРОТАЖНОМУ КАБЕЛЮ | 2009 |
|
RU2455697C2 |
СПОСОБ ДИСТАНЦИОННОГО ТЕСТИРОВАНИЯ ПРИБОРОВ АКУСТИЧЕСКОГО КАРОТАЖА В ПОЛЕВЫХ УСЛОВИЯХ | 2013 |
|
RU2521144C1 |
СКВАЖИННЫЙ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЙ КОМПЛЕКС | 2009 |
|
RU2425213C1 |
ПРИБОР АКУСТИЧЕСКИЙ СКВАЖИННЫЙ | 2004 |
|
RU2260688C1 |
УСТРОЙСТВО АКУСТИЧЕСКОГО КАРОТАЖА СКВАЖИН | 1996 |
|
RU2096812C1 |
СКВАЖИННЫЙ АКУСТИЧЕСКИЙ СКАНЕР | 2015 |
|
RU2614193C1 |
СПОСОБ СЕЙСМИЧЕСКОЙ РАЗВЕДКИ ПРИ ПОИСКЕ УГЛЕВОДОРОДОВ И СЕЙСМИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2431868C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ОРИЕНТАЦИИ СКВАЖИНЫ И ИНКЛИНОМЕТР | 2003 |
|
RU2253838C2 |
Способ передачи информации от скважинной к наземной части геофизической аппаратуры | 1983 |
|
SU1134708A1 |
Изобретение относится к области нефтепромысловой геофизики и может быть использовано в процессе акустического каротажа скважин. Заявлен прибор акустический скважинный с встроенной системой диагностирования, содержащий систему излучателей и приемников акустических сигналов, блок телеметрии, содержащий АЦП с блоком анализа данных, микроконтроллер, и наземный блок управления. Прибор дополнительно оснащен блоком диагностики в виде независимых датчиков по числу излучателей и приемников акустических сигналов, каждый из которых установлен на одном валу в непосредственной близости со своим излучателем и приемником акустических сигналов, и блоком анализа данных, входящим в состав скважинного блока управления и связанным посредством микроконтроллера с независимыми датчиками. Технический результат - повышение точности контроля и передачи измеряемых параметров в реальном режиме времени, а также процесса диагностики скважинного акустического прибора в реальном режиме времени и повышение надежности и эффективности проведения геофизических исследований. 3 ил.
Прибор акустический скважинный с встроенной системой диагностирования, содержащий систему излучателей и приемников акустических сигналов, блок телеметрии, содержащий АЦП с микроконтроллером, и наземный блок управления, отличающийся тем, что он дополнительно оснащен блоком диагностики в виде независимых датчиков по числу излучателей и приемников акустических сигналов, каждый из которых установлен на одном валу в непосредственной близости со своим излучателем и приемником акустических сигналов, и блоком анализа данных, входящим в состав скважинного блока управления и связанным посредством микроконтроллера с независимыми датчиками.
СПОСОБ ДИСТАНЦИОННОГО ТЕСТИРОВАНИЯ ПРИБОРОВ АКУСТИЧЕСКОГО КАРОТАЖА В ПОЛЕВЫХ УСЛОВИЯХ | 2013 |
|
RU2521144C1 |
US 4862425 A, 29.08.1989 | |||
Электронный имитатор сигналов скважинного прибора акустического каротажа | 1975 |
|
SU557339A1 |
Устройство для градуировки и повер-Ки АппАРАТуРы АКуСТичЕСКОгО КАРОТАжА | 1978 |
|
SU813349A1 |
Поверочно-калибровочное устройство для приборов акустического каротажа | 1981 |
|
SU949592A1 |
WO 2013154519 A1, 17.10.2013. |
Авторы
Даты
2020-06-29—Публикация
2019-10-10—Подача