Способ флотационного обогащения руд и нерудного минерального сырья Российский патент 2020 года по МПК B03D1/02 

Описание патента на изобретение RU2725429C1

Изобретение относится к горнорудной промышленности, а именно - к обогащению полезных ископаемых методом флотации, и может быть использовано при глубокой переработке рудного и нерудного минерального сырья.

Известен способ флотационного извлечения из воды тонкодисперсных примесей методом электрофлотации [1]. Электрофлотацию осуществляют путем пропускания мелких пузырьков газа сквозь обрабатываемый объем суспензии - в случае флотации твердых включений, или эмульсии - в случае извлечения капель масла. Мелкие пузырьки газа, в основном водорода и кислорода, получают электролитическим разложением воды. Определяющую роль в процессе электрофлотации выполняют пузырьки водорода, выделяющиеся на катоде. Их размер и интенсивность образования зависят в основном от состава электролита, поверхностного натяжения на границе раздела «электрод-раствор», материала и формы электродов, плотности тока.

Электрофлотационный метод извлечения минеральных частиц имеет ряд недостатков, связанных с малой подъемной силой тонких пузырьков и малой скоростью всплытия минерализованных пузырьков, снижающих удельную производительность электрофлотационного аппарата. Повышение производительности электрофлотационного аппарата особенно важно при флотационном выделении минералов, содержащих цветные и благородные металлы. Указанные минералы, обладающие высокой плотностью, в большей мере уменьшают скорость подъема флотационных комплексов «пузырек-минеральные частицы» во флотоконцентрат.

Наиболее близким по технической сущности и совокупности существенных признаков является способ флотационного обогащения руд, содержащих сульфидные минералы и золото [2], включающий подготовку газоводной эмульсии «кислород-вода» электрохимическим методом, пропусканием воды через анодную камеру проточного мембранного электролизера, при этом одновременно минеральную суспензию насыщают пузырьками водорода, преимущественно размером 50 мкм и менее, пропуская ее через катодную камеру проточного мембранного электролизера, а после смешивания минеральной суспензии с газоводной эмульсией «кислород-вода» образовавшуюся смесь направляют в камеру флотационной машины, где ее перемешивают и насыщают пузырьками воздуха обычной флотационной крупности.

К недостаткам указанного способа следует отнести невысокое извлечение полезного компонента в пенный продукт, обусловленное малой вероятностью закрепления извлекаемых тонких частиц полезного компонента на поверхности пузырька. Малая вероятность закрепления связана со значительным понижением поверхностного натяжения на границе «газ-вода». Диспергирование газовой фазы связано с коалесценцией, то есть слиянием мелких пузырьков и образованием крупных. Введение кислородсодержащей эмульсии в водно-минеральную суспензию непосредственно в камеру флотомашины по прототипу снижает эффект активации поверхности минеральных частиц растворенным кислородом. Способ требует усовершенствования, направленного на усиление смещения равновесия в сторону мелких пузырьков и фиксации их размера в диапазоне преимущественно меньше 50 мкм.

Технический результат предлагаемого способа заключается в повышении эффективности флотационного обогащения руд за счет снижения потерь ценных минералов в виде тонких частиц полезного компонента и повышении удельной производительности флотационной машины посредством подачи кислородсодержащей газоводной эмульсии в смеситель до подачи во флота-машину, а также обработки ультразвуком водно-газовой смеси, перемешиваемой дозированно с флотореагентами перед подачей во флотомашину. Концентрированное распределение собирателей и пенообразователей в поверхностных слоях - в пленочной воде диспергируемых ультразвуком пузырьках водорода, обеспечивает высокую вероятность сцепления мелких флотоактивных минеральных частиц с пузырьками газов и предотвращает коалесценцию мелких пузырьков.

Технический результат достигается за счет того, что в способе флотационного обогащения руд и нерудного минерального сырья, включающем подготовку газоводной эмульсии «кислород-вода» электрохимическим методом - пропусканием воды через анодную камеру проточного мембранного электролизера, подготовку водно-газовой смеси, насыщенной пузырьками водорода преимущественно размером 50 мкм и менее, пропусканием водно-газовой смеси через катодную камеру проточного мембранного электролизера, смешивание минеральной суспензии с газоводной эмульсией «кислород-вода» и водно-газовой смесью, насыщенной пузырьками водорода в камере флотационной машины, где минеральную суспензию перемешивают и насыщают пузырьками воздуха повышенной флотационной крупности, для повышения извлечения шламовой продуктивной фракции водно-газовую смесь, насыщенную пузырьками водорода, преимущественно размером 50 мкм и менее, после пропускания через катодную камеру проточного мембранного электролизера, дополнительно подвергают ультразвуковой обработке, при этом до, во время или после ультразвуковой обработки в водно-газовую смесь дозированно вводят флотореагенты - пенообразователь, депрессор и собиратель, при этом осуществляют дозированный ввод собирателя - ксантогената натрия или калия, в газоводную эмульсию «кислород-вода» для частичного окисления до диксантогенида, и полученную эмульсию подают в смеситель с минеральной суспензией одновременно с водно-газовой смесью до ввода в камеру флотационной машины.

Возможность формирования требуемой последовательности выполняемых действий предложенными средствами позволяет решить поставленную задачу, определяет новизну, промышленную применимость и изобретательский уровень разработки.

Для выполнения способа используются: проточный мембранный электролизер, содержащий анодную камеру - для приготовления газоводной эмульсии «кислород-вода», и катодную камеру - для приготовления водно-газовой смеси, насыщенной пузырьками водорода; ультразвуковая установка - для диспергирования водно-газовой смеси с флотореагентами - пенообразователем, депрессором и собирателем перед агитацией перемешиванием; смеситель - для агитации минеральной суспензии перемешиванием; флотационная машина - для извлечения продуктивной фракции.

Способ реализуют следующим образом.

Параллельно осуществляют подготовку газоводной эмульсии «кислород-вода» электрохимическим методом - пропусканием воды через анодную камеру проточного мембранного электролизера и подготовку водно-газовой смеси. Пузырьки кислорода образуются на анодах в результате электролитического разложения воды. Водно-газовую смесь насыщают пузырьками водорода преимущественно размером 50 мкм и менее, пропусканием водно-газовой смеси через катодную камеру проточного мембранного электролизера. Для повышения извлечения шламовой продуктивной фракции водно-газовую смесь, насыщенную пузырьками водорода, преимущественно размером 50 мкм и менее, после пропускания через катодную камеру проточного мембранного электролизера, дополнительно подвергают ультразвуковой обработке. Диспергирование пузырьков водорода осуществляется до уровня менее 10 мкм. До, во время или после ультразвуковой обработки в водно-газовую смесь дозированно вводят флотореагенты - пенообразователь, депрессор и собиратель. Осуществляют дозированный ввод собирателя - ксантогената натрия или калия, в газоводную эмульсию «кислород-вода» для частичного окисления до диксантогенида и полученную эмульсию подают в смеситель с минеральной суспензией одновременно с водно-газовой смесью до ввода в камеру флотационной машины. Смешивание минеральной суспензии с предварительно приготовленной электрохимическим методом газоводной эмульсией «кислород-вода», позволяет до ввода во флотомашину насытить минеральную суспензию мелкими пузырьками кислорода. Растворение кислорода в воде повысит окислительно-восстановительный потенциал минеральной суспензии. Кислород в начальный период воздействия способствует сорбции на частицах сульфидов минеральной суспензии анионов и молекул флотационного реагента-собирателя за счет появления активных центров на поверхности гидрофобных частиц. Поверхность в частично окисленном состоянии является наиболее сорбционно активной по отношению к флотационным реагентам и, следовательно, подготовленной для образования флотационных комплексов. Селективное закрепление реагента-собирателя способствует повышению термодинамической вероятности образования флотационных комплексов с частицами извлекаемых в пенный продукт минералов. В результате коалесценции мелких минерализованных пузырьков кислорода и водорода и пузырьков обычной флотационной крупности получают флотационные комплексы, обладающие высокой скоростью всплытия, что повышает удельную производительность флотационной машины. Пузырьки воздуха обычной флотационной крупности получают известными методами: пропусканием через перфорированные устройства или дроблением воздуха механическими устройствами. Высокая вероятность образования флотационных комплексов из тонких гидрофобизированных частиц минералов, высокая скорость их транспортировки во флотационный концентрат повышают эффективность обогащения полезного компонента. Отделение минерализованных полезным компонентом пузырьков осуществляют путем их всплытия на поверхность. Образовавшаяся на поверхности пена является флотоконцентратом. Оставшуюся в объеме измельченную руду отводят на дополнительную переработку или в хвостохранилище.

Способ обеспечивает увеличение скорости транспортировки минеральной массы во флотоконцентрат, возрастает удельная производительность флотационной машины и извлечение тонких частиц минералов, снижаются потери ценных компонентов, повышается эффективность флотационного обогащения руд и нерудного минерального сырья.

Источники информации

1. Яковлев С.В., Краснобородько И.Г., Рогов В.М. Технология электрохимической очистки воды. Л.: Стройиздат, Ленинградское отделение, 1987, С. 165-175, 261-264.

2. Патент РФ №2389557. Способ флотационного обогащения руд, содержащих сульфидные минералы и золото, опубл. 20.05.2010, Бюл. №14.

Похожие патенты RU2725429C1

название год авторы номер документа
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2010
  • Секисов Артур Геннадиевич
  • Лавров Александр Юрьевич
  • Мязин Виктор Петрович
  • Шкатов Владимир Юрьевич
  • Кондратьев Сергей Александрович
  • Федоров Антон Сергеевич
RU2443475C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2009
  • Секисов Артур Геннадиевич
  • Тапсиев Александр Петрович
  • Кондратьев Сергей Александрович
  • Лавров Александр Юрьевич
RU2389557C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2010
  • Секисов Артур Геннадиевич
  • Кондратьев Сергей Александрович
  • Тапсиев Александр Петрович
  • Лавров Александр Юрьевич
  • Шкатов Владимир Юрьевич
  • Хакулов Виктор Алексеевич
  • Федоров Антон Сергеевич
RU2426598C1
Способ флотационного обогащения склонных к шламообразованию руд 2020
  • Прохоров Константин Валерьевич
  • Секисов Артур Геннадиевич
RU2744685C1
СПОСОБ ФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ РЕДКИХ МЕТАЛЛОВ 2015
  • Александрова Татьяна Николаевна
  • Ромашев Артем Олегович
  • Павлова Ульяна Михайловна
RU2612162C1
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДНОГО РАСТВОРА РЕАГЕНТОВ ДЛЯ ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ РУД И КОНЦЕНТРАТОВ 2008
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Лавров Александр Юрьевич
  • Королев Вячеслав Сергеевич
RU2386706C1
Двухкамерная электрофлотационная колонна 2020
  • Прохоров Константин Васильевич
RU2760549C1
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДНОГО РАСТВОРА РЕАГЕНТОВ ДЛЯ ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ РУДНОГО МИНЕРАЛЬНОГО СЫРЬЯ 2009
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Манзырев Дмитрий Владимирович
  • Лавров Александр Юрьевич
RU2413013C1
СПОСОБ ДОИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ГАЛЕ-ЭФЕЛЬНЫХ ОТВАЛОВ И ХВОСТОВ ПРОМЫВКИ ПЕСКОВ РОССЫПНЫХ МЕСТОРОЖДЕНИЙ 2019
  • Секисов Артур Геннадиевич
  • Петухов Александр Александрович
  • Шевченко Юрий Степанович
  • Лавров Александр Юрьевич
  • Зыков Николай Васильевич
  • Королев Вячеслав Сергеевич
  • Долгов Алексей Вячеславович
RU2743160C2
СПОСОБ АКТИВАЦИОННОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ РУД И КОНЦЕНТРАТОВ 2009
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Манзырев Дмитрий Владимирович
  • Королев Вячеслав Сергеевич
  • Басс Максим Станиславович
  • Дейс Данил Александрович
RU2403301C1

Реферат патента 2020 года Способ флотационного обогащения руд и нерудного минерального сырья

Предложенное изобретение относится к горнорудной промышленности, а именно к обогащению полезных ископаемых методом флотации, и может быть использовано при глубокой переработке рудного и нерудного минерального сырья. Способ флотационного обогащения руд и нерудного минерального сырья включает подготовку газоводной эмульсии «кислород-вода» электрохимическим методом - пропусканием воды через анодную камеру проточного мембранного электролизера, подготовку водно-газовой смеси, насыщенной пузырьками водорода преимущественно размером 50 мкм и менее, пропусканием водно-газовой смеси через катодную камеру проточного мембранного электролизера, смешивание минеральной суспензии с газоводной эмульсией «кислород-вода» и водно-газовой смесью, насыщенной пузырьками водорода в камере флотационной машины, где минеральную суспензию перемешивают и насыщают пузырьками воздуха повышенной флотационной крупности. Для повышения извлечения шламовой продуктивной фракции водно-газовую смесь, насыщенную пузырьками водорода преимущественно размером 50 мкм и менее, после пропускания через катодную камеру проточного мембранного электролизера дополнительно подвергают ультразвуковой обработке. До, во время или после ультразвуковой обработки в водно-газовую смесь дозированно вводят флотореагенты - пенообразователь, депрессор и собиратель. Осуществляют дозированный ввод собирателя - ксантогената натрия или калия в газоводную эмульсию «кислород-вода» для частичного окисления до диксантогенида. Полученную эмульсию подают в смеситель с минеральной суспензией одновременно с водно-газовой смесью до ввода в камеру флотационной машины. Технический результат - повышение эффективности флотационного обогащения руд.

Формула изобретения RU 2 725 429 C1

Способ флотационного обогащения руд и нерудного минерального сырья, включающий подготовку газоводной эмульсии «кислород-вода» электрохимическим методом - пропусканием воды через анодную камеру проточного мембранного электролизера, подготовку водно-газовой смеси, насыщенной пузырьками водорода преимущественно размером 50 мкм и менее, пропусканием водно-газовой смеси через катодную камеру проточного мембранного электролизера, смешивание минеральной суспензии с газоводной эмульсией «кислород-вода» и водно-газовой смесью, насыщенной пузырьками водорода в камере флотационной машины, где минеральную суспензию перемешивают и насыщают пузырьками воздуха повышенной флотационной крупности, отличающийся тем, что для повышения извлечения шламовой продуктивной фракции водно-газовую смесь, насыщенную пузырьками водорода преимущественно размером 50 мкм и менее, после пропускания через катодную камеру проточного мембранного электролизера дополнительно подвергают ультразвуковой обработке, при этом до, во время или после ультразвуковой обработки в водно-газовую смесь дозированно вводят флотореагенты - пенообразователь, депрессор и собиратель, при этом осуществляют дозированный ввод собирателя - ксантогената натрия или калия в газоводную эмульсию «кислород-вода» для частичного окисления до диксантогенида, и полученную эмульсию подают в смеситель с минеральной суспензией одновременно с водно-газовой смесью до ввода в камеру флотационной машины.

Документы, цитированные в отчете о поиске Патент 2020 года RU2725429C1

СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2009
  • Секисов Артур Геннадиевич
  • Тапсиев Александр Петрович
  • Кондратьев Сергей Александрович
  • Лавров Александр Юрьевич
RU2389557C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2010
  • Секисов Артур Геннадиевич
  • Лавров Александр Юрьевич
  • Мязин Виктор Петрович
  • Шкатов Владимир Юрьевич
  • Кондратьев Сергей Александрович
  • Федоров Антон Сергеевич
RU2443475C1
ФЛОТАЦИОННАЯ МАШИНА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 0
SU269859A1
СПОСОБ ОБОГАЩЕНИЯ ЗОЛОТОСОДЕРЖАЩИХ РУД С ПОВЫШЕННОЙ СОРБЦИОННОЙ СПОСОБНОСТЬЮ 2017
  • Александрова Татьяна Николаевна
  • Семенихин Дмитрий Николаевич
  • Николаева Надежда Валерьевна
  • Ромашев Артём Олегович
RU2648402C1
СПОСОБ ФЛОТАЦИИ УПОРНЫХ ТРУДНООБОГАТИМЫХ РУД БЛАГОРОДНЫХ МЕТАЛЛОВ 2015
  • Башлыкова Татьяна Викторовна
  • Пахомова Галина Алексеевна
  • Ларионова Вера Юрьевна
RU2624497C2
US 4904358 A, 27.02.1990.

RU 2 725 429 C1

Авторы

Секисов Артур Геннадьевич

Прохоров Константин Валерьевич

Рассказова Анна Вадимовна

Литвинова Наталья Михайловна

Копылова Александра Евгеньевна

Шепета Елена Дмитриевна

Киенко Лидия Андреевна

Воронова Ольга Васильевна

Даты

2020-07-02Публикация

2020-02-14Подача