СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО Российский патент 2012 года по МПК B03D1/02 B03B1/00 

Описание патента на изобретение RU2443475C1

Изобретение относится к горнорудной промышленности, а именно к обогащению полезных ископаемых методом флотации, и может быть использовано при глубокой переработке рудного и нерудного минерального сырья.

Известен способ флотационного извлечения из воды тонкодисперсных примесей методом электрофлотации (Яковлев С.В., Краснобородько И.Г., Рогов В.М. Технология электрохимической очистки воды. Л.: Стройиздат, Ленинградское отделение, 1987, с.165-175, 261-264). Электрофлотацию осуществляют путем пропускания мелких пузырьков газа сквозь обрабатываемый объем пульпы в случае флотации твердых включений или эмульсии в случае извлечения капель масла. Мелкие пузырьки газа, в основном водорода и кислорода, получают электролитическим разложением воды. Определяющую роль в процессе электрофлотации выполняют пузырьки водорода, выделяющиеся на катоде. Их размер и интенсивность образования зависят в основном от состава электролита, поверхностного натяжения на границе раздела «электрод-раствор», материала и формы электродов, плотности тока.

Электрофлотационный метод извлечения минеральных частиц имеет ряд недостатков, связанных с малой подъемной силой тонких пузырьков и малой скоростью всплытия минерализованных пузырьков, снижающих удельную производительность электрофлотационного аппарата. Повышение производительности электрофлотационного аппарата особенно важно при флотационном выделении минералов, содержащих цветные и благородные металлы. Указанные минералы, обладающие высокой плотностью, в большей мере уменьшают скорость подъема флотационных комплексов «пузырек-минеральные частицы» во флотоконцентрат.

Наиболее близким по технической сущности и совокупности существенных признаков к заявляемому является способ флотационной сепарации тонкодисперсных минералов (см. патент РФ №2254170, B03D 1/02, 1/24, опубл. в БИПМ №17, 2005 г.). Сущность способа заключается в насыщении минеральной суспензии пузырьками газа путем смешивания ее с предварительно приготовленной механическим диспергированием газоводной эмульсией, минерализацию пузырьков газа и отделение минерализованных пузырьков в виде флотоконцентрата. Минеральную суспензию смешивают с газоводной эмульсией, содержащей от 66 до 70% газа в виде пузырьков с размерами менее 50 мкм. Процесс минерализации пузырьков газа производят при одновременном перемешивании и движении суспензии в восходящих и нисходящих потоках.

К недостаткам указанного способа следует отнести невысокое извлечение полезного компонента в пенный продукт, обусловленное малой вероятностью закрепления извлекаемых тонких частиц полезного компонента на поверхности пузырька. Малая вероятность закрепления связана со значительным понижением поверхностного натяжения на границе «газ-вода». Механическое диспергирование газовой фазы связано с обратным процессом - коалесценцией, то есть слиянием мелких пузырьков и образованием крупных. Для смещения равновесия в сторону мелких пузырьков и фиксации их размера в диапазоне преимущественно меньше 50 мкм необходима подача в диспергируемый объем поверхностно-активных веществ (ПАВ). Без внесения ПАВ происходит коалесценция мелких пузырьков, и получить тонкую газоводную эмульсию не представляется возможным. Применение ПАВ при высокой их концентрации позволяет достигнуть указанной цели и повысить вероятность встречи пузырьков и тонких частиц полезного компонента, получаемых при глубокой переработке руд. Но высокая концентрация ПАВ приводит к снижению поверхностного натяжения суспензии, что препятствует положительному эффекту от применения реагентов-собирателей и образованию флотационных комплексов «частица-пузырек». В результате положительный эффект от применения мелких пузырьков, полученных при механическом дроблении газовой фазы, пропадает, а извлечение ценных минералов во флотоконцентрат практически не возрастает. Механическое диспергирование газовой фазы не позволяет получить пузырьки газообразного кислорода и водорода и, соответственно, регулировать степень окисления минеральных частиц, что необходимо для более успешной флотации сульфидов.

Техническим результатом предлагаемого способа является повышение эффективности флотационного обогащения руд, содержащих сульфидные минералы и золото, за счет снижения потерь ценных минералов в виде тонких частиц полезного компонента и повышения удельной производительности флотационной машины вследствие уменьшения времени цикла обработки пульпы.

Сущность изобретения в том, что способ флотационного обогащения руд, содержащих сульфидные минералы и золото, включающий измельчение руды, приготовление газоводной эмульсии, насыщение минеральной суспензии пузырьками газа путем смешивания ее с приготовленной газоводной смесью, минерализацию пузырьков газа и отделение их в виде флотоконцентрата, отличается тем, что газоводную эмульсию «кислород-вода» готовят электрохимическим методом, пропуская воду через анодную камеру проточного мембранного электролизера, а минеральную суспензию, содержащую измельченную руду, предварительно насыщают пузырьками водорода, преимущественно с размером 50 мкм и менее, пропуская ее через катодную камеру проточного мембранного электролизера, после выхода из катодной камеры суспензию смешивают с газовой эмульсией «кислород-вода», образовавшуюся смесь облучают светом в ультрафиолетовом диапазоне длин волн, а затем направляют в камеру флотационной машины, где ее дополнительно насыщают пузырьками воздуха обычной флотационной крупности.

В заявляемом способе, в отличие от прототипа, газоводную эмульсию «кислород-вода» готовят электрохимическим методом, пропуская воду через анодную камеру проточного мембранного электролизера. Одновременно минеральную суспензию насыщают пузырьками водорода, преимущественно размером 50 мкм и менее, пропуская ее через катодную камеру проточного мембранного электролизера. После прохождения катодной камеры суспензию смешивают с эмульсией «кислород-вода» при одновременном воздействии ультрафиолетовых лучей, обеспечивая тем самым формирование активных центров на поверхности минералов. Затем образовавшуюся смесь направляют в камеру флотационной машины, где ее перемешивают и насыщают пузырьками воздуха обычной флотационной крупности.

Подача воздуха в виде пузырьков обычной флотационной крупности в насыщенную мелкими пузырьками водорода и кислорода минеральную суспензию позволяет сформировать, в случае объединения различных видов пузырьков, флотационные комплексы, обладающие достаточной подъемной силой и способные быстро вынести минеральную массу, содержащую полезные компоненты, на поверхность. В результате возрастает извлечение тонких частиц сульфидов и золота, соответственно, снижаются потери ценных компонентов, повышается эффективность флотационного обогащения руд.

Способ реализуют следующим образом.

Предварительно готовят газоводную эмульсию «кислород-вода» путем пропускания воды через анодную камеру проточного мембранного электролизера. Пузырьки кислорода образуются на анодах в результате электролитического разложения воды.

Одновременно насыщают минеральную суспензию, содержащую измельченную руду, в том числе сульфидные минералы и золото, пузырьками водорода, преимущественно размером 50 мкм и менее. Насыщение осуществляют, пропуская минеральную суспензию через катодную камеру проточного мембранного электролизера. Указанного размера пузырьки водорода достигают изменением скорости пропускания минеральной суспензии через катодную камеру проточного мембранного электролизера путем гидроабразивного их срыва с поверхности электродов. При выходе из катодной камеры в пульпу, насыщенную пузырьками водорода, подают газоводную эмульсию «кислород-вода» из анодной камеры и полученную смесь подвергают воздействию ультрафиолетового излучения (используя, например, ртутные лампы). Этим обеспечивается закрепление мелких пузырьков водорода на поверхности наиболее тонких и гидрофобных частиц сульфидов и золота, т.е. формируются флотоактивные комплексы. Облученную смесь направляют в камеру флотационной машины, при этом активированная излучением поверхность минеральных частиц прочнее сцепляется с пузырьками водорода и дополнительно окисляется активным кислородом. Флотацию осуществляют пропусканием через пульпу пузырьков воздуха обычной флотационной крупности 0,6÷1,2 мм и подачей в пульпу флотореагентов. В отдельных случаях определенные реагенты, например собиратели, могут подаваться в смесь минеральной суспензии и насыщенной кислородом эмульсии до их облучения УФ-лучами.

Пузырьки воздуха обычной флотационной крупности получают известными методами: пропусканием через перфорированные устройства или дроблением воздуха механическими устройствами. В результате коалесценции мелких минерализованных пузырьков кислорода и водорода и пузырьков обычной флотационной крупности получают флотационные комплексы, обладающие высокой скоростью всплытия, что повышает удельную производительность флотационной машины. Высокая вероятность образования флотационных комплексов из тонких гидрофобизированных частиц сульфидов и золота, а также большая скорость их транспортировки во флотационный концентрат повышают эффективность обогащения полезного компонента. Образовавшаяся на поверхности пена, состоящая из газосодержащих пузырьков и прикрепленных к ним частиц рудных минералов, включая золото, является флотоконцентратом.

Предлагаемый способ может быть использован как для получения коллективного, так и селективных концентратов. Оставшуюся в объеме измельченную руду отводят на дополнительную переработку или в хвостохранилище.

Похожие патенты RU2443475C1

название год авторы номер документа
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2010
  • Секисов Артур Геннадиевич
  • Кондратьев Сергей Александрович
  • Тапсиев Александр Петрович
  • Лавров Александр Юрьевич
  • Шкатов Владимир Юрьевич
  • Хакулов Виктор Алексеевич
  • Федоров Антон Сергеевич
RU2426598C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2009
  • Секисов Артур Геннадиевич
  • Тапсиев Александр Петрович
  • Кондратьев Сергей Александрович
  • Лавров Александр Юрьевич
RU2389557C1
Способ флотационного обогащения руд и нерудного минерального сырья 2020
  • Секисов Артур Геннадьевич
  • Прохоров Константин Валерьевич
  • Рассказова Анна Вадимовна
  • Литвинова Наталья Михайловна
  • Копылова Александра Евгеньевна
  • Шепета Елена Дмитриевна
  • Киенко Лидия Андреевна
  • Воронова Ольга Васильевна
RU2725429C1
СПОСОБ ФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ РЕДКИХ МЕТАЛЛОВ 2015
  • Александрова Татьяна Николаевна
  • Ромашев Артем Олегович
  • Павлова Ульяна Михайловна
RU2612162C1
Способ флотационного обогащения склонных к шламообразованию руд 2020
  • Прохоров Константин Валерьевич
  • Секисов Артур Геннадиевич
RU2744685C1
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДНОГО РАСТВОРА РЕАГЕНТОВ ДЛЯ ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ РУД И КОНЦЕНТРАТОВ 2008
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Лавров Александр Юрьевич
  • Королев Вячеслав Сергеевич
RU2386706C1
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДНОГО РАСТВОРА РЕАГЕНТОВ ДЛЯ ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ РУДНОГО МИНЕРАЛЬНОГО СЫРЬЯ 2009
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Манзырев Дмитрий Владимирович
  • Лавров Александр Юрьевич
RU2413013C1
СПОСОБ АКТИВАЦИОННОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ РУД И КОНЦЕНТРАТОВ 2009
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Манзырев Дмитрий Владимирович
  • Королев Вячеслав Сергеевич
  • Басс Максим Станиславович
  • Дейс Данил Александрович
RU2403301C1
СПОСОБ ФЛОТАЦИОННОЙ СЕПАРАЦИИ ТОНКОДИСПЕРСНЫХ МИНЕРАЛОВ И ФЛОТАЦИОННАЯ МАШИНА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2003
  • Рулев Николай Николаевич
RU2254170C2
Двухкамерная электрофлотационная колонна 2020
  • Прохоров Константин Васильевич
RU2760549C1

Реферат патента 2012 года СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО

Изобретение относится к горнорудной промышленности, а именно к обогащению полезных ископаемых методом флотации, и может быть использовано при глубокой переработке рудного и нерудного минерального сырья. Способ включает измельчение руды, приготовление газоводной эмульсии, насыщение минеральной суспензии пузырьками газа путем смешивания ее с приготовленной газоводной смесью, минерализацию пузырьков газа и отделение их в виде флотоконцентрата. Газоводную эмульсию «кислород-вода» готовят электрохимическим методом, пропуская воду через анодную камеру проточного мембранного электролизера. Минеральную суспензию, содержащую измельченную руду, предварительно насыщают пузырьками водорода, преимущественно с размером 50 мкм и менее, пропуская ее через катодную камеру проточного мембранного электролизера. После выхода из катодной камеры суспензию смешивают с газовой эмульсией «кислород-вода», образовавшуюся смесь облучают светом в ультрафиолетовом диапазоне длин волн, а затем направляют в камеру флотационной машины, где ее дополнительно насыщают пузырьками воздуха обычной флотационной крупности. Технический результат - повышение эффективности флотационного обогащения руд.

Формула изобретения RU 2 443 475 C1

Способ флотационного обогащения руд, содержащих сульфидные минералы и золото, включающий измельчение руды, приготовление газоводной эмульсии, насыщение минеральной суспензии пузырьками газа путем смешивания ее с приготовленной газоводной смесью, минерализацию пузырьков газа и отделение их в виде флотоконцентрата, отличающийся тем, что газоводную эмульсию «кислород-вода» готовят электрохимическим методом, пропуская воду через анодную камеру проточного мембранного электролизера, а минеральную суспензию, содержащую измельченную руду, предварительно насыщают пузырьками водорода, преимущественно с размером 50 мкм и менее, пропуская ее через катодную камеру проточного мембранного электролизера, после выхода из катодной камеры суспензию смешивают с газовой эмульсией «кислород-вода», образовавшуюся смесь облучают светом в ультрафиолетовом диапазоне длин волн, а затем направляют в камеру флотационной машины, где ее дополнительно насыщают пузырьками воздуха обычной флотационной крупности.

Документы, цитированные в отчете о поиске Патент 2012 года RU2443475C1

СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ РУД, СОДЕРЖАЩИХ СУЛЬФИДНЫЕ МИНЕРАЛЫ И ЗОЛОТО 2009
  • Секисов Артур Геннадиевич
  • Тапсиев Александр Петрович
  • Кондратьев Сергей Александрович
  • Лавров Александр Юрьевич
RU2389557C1
Способ очистки сточных вод от ионов тяжелых металлов и устройство для его осуществления 1989
  • Колесников Владимир Александрович
  • Кокарев Геннадий Александрович
  • Шалыт Евгений Анатольевич
  • Варксин Станислав Олегович
SU1675215A1
СПОСОБ ФЛОТАЦИОННОЙ СЕПАРАЦИИ ТОНКОДИСПЕРСНЫХ МИНЕРАЛОВ И ФЛОТАЦИОННАЯ МАШИНА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2003
  • Рулев Николай Николаевич
RU2254170C2
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДНОГО РАСТВОРА РЕАГЕНТОВ ДЛЯ ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ РУД И КОНЦЕНТРАТОВ 2008
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Лавров Александр Юрьевич
  • Королев Вячеслав Сергеевич
RU2386706C1
СПОСОБ ОБРАБОТКИ ВОДЫ 2001
  • Бахир В.М.
  • Задорожний Ю.Г.
  • Паничева С.А.
RU2207982C2
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД И КОНЦЕНТРАТОВ 1992
  • Абрамина Е.В.
  • Дариенко А.П.
  • Зарочинцев А.И.
RU2071980C1
US 5942098 A, 24.08.1999.

RU 2 443 475 C1

Авторы

Секисов Артур Геннадиевич

Лавров Александр Юрьевич

Мязин Виктор Петрович

Шкатов Владимир Юрьевич

Кондратьев Сергей Александрович

Федоров Антон Сергеевич

Даты

2012-02-27Публикация

2010-07-06Подача