СПОСОБ ПОЛУЧЕНИЯ ПОКРОВНОЙ КОМПОЗИЦИИ ДЛЯ МЕЛОВАННОЙ БУМАГИ Российский патент 2020 года по МПК C08K13/00 B82B3/00 B82Y40/00 D21H19/40 

Описание патента на изобретение RU2725587C1

Способ касается получения покровных композиций с использованием нанофибриллярной целлюлозы для изготовления мелованных видов бумаги и может быть использован в целлюлозно-бумажной промышленности.

В настоящее время при производстве бумаги большое внимание уделяется разработке технологий, позволяющих улучшить оптические и механические характеристики бумаг, а также покрытий для мелованных видов бумаги.

При производстве мелованных бумаг при нанесении покрытий на поверхность бумажного листа существенное значение имеет вязкость меловальной суспензии, которая определяется свойствами пигментов и связующих веществ. Подвижная меловальная суспензия после нанесения быстро проникает в капиллярно-пористую структуру бумажного листа, тогда как вязкая суспензия задерживается на поверхности листа и удаляется одним из инструментов в зависимости от метода нанесения покрытия - шабером, лезвием и т.д.

В процессе мелования часть жидкости, главным образом вода, всасывается под действием капиллярных сил в поры бумаги-основы. Способность меловального состава удерживать жидкую фазу и замедлять ее всасывание обозначается термином «водоудержание». Наряду с реологическими свойствами водоудержание определяет поведение суспензии при нанесении на бумажный лист и влияет на качество покрытия. В том случае, когда покровный состав имеет низкую водоудерживающую способность, жидкость быстро впитывается в основу, оставляя на поверхности плотную пленку. Одновременно с жидкостью в основу проникает связующее, обедняя покрытие и снижая его прочность. При слишком высоком водоудержании возникают затруднения в процессе сушки покровного слоя, что приводит к его прилипанию к поверхности сушильных цилиндров. Оптимальная величина водоудержания покровного состава выбирается в зависимости от свойств бумаги-основы, способа и режима нанесения покрытия. Следует отметить повышенное водоудержание у суспензий с каолином. Это происходит вследствие того, что каолин в водной среде проявляет высокую поверхностную активность. Присутствие же мела в составе суспензий значительно снижает водоудержание, поэтому мел обычно используют в сочетании с каолином или другими пигментами.

Нанофибриллярная целлюлоза позволяет регулировать водоудержание покровной композиции и поэтому является перспективной добавкой в композиции для изготовления бумаги.

Известен способ получения покровной композиции, содержащей эмульгированный связующий материал, где данный связующий материал представляет собой полимер, выбранный из группы, включающей полимеры, полученные эмульсионной полимеризацией ненасыщенных виниловых, акрилатных и/или метакрилатных мономеров; от 0,3% масс. до 10% масс. второго полимера, выбранного из одного или нескольких полимеров из группы, включающей поливиниловый спирт и растворимые в воде сополимеры, имеющие повторяющиеся звенья винилового спирта, где, если второй полимер представляет собой поливиниловый спирт, по меньшей мере 85% масс. второго полимера имеет число повторяющихся звеньев, составляющее не менее чем 2000; и от 0,03% масс. до 15% масс. наполнителя на основе целлюлозы, выбранного из группы, состоящей из микрокристаллической целлюлозы, регенерированной целлюлозы и лигноцеллюлозы; по отношению к полной массе композиции, где массовое соотношение второго полимера и связующего материала находится в интервале от 1:40 до 1:3. Массовое соотношение второго полимера и связующего материала находится в интервале от 1:100 до 1:1. Массовое соотношение второго полимера и связующего материала находится предпочтительно в интервале от 1:50 до 1:2, предпочтительнее в интервале от 1:40 до 1:3 и еще предпочтительнее в интервале от 1:10 до 1:4.

Покровная композиция согласно данному изобретению может дополнительно включать неорганические наполнители, разбавители и добавки (в том числе, коалесцирующие вещества, поверхностно-активные вещества, диспергирующие вещества, биоциды, нейтрализующие вещества, пеногасители и антифризы), используемые в традиционных покровных композициях (RU 2696453, 2019). Недостаток данного способа заключается в том, что указанная покровная композиция вследствие используемого состава не может быть использована при производстве мелованной бумаги.

Более близким к изобретению является способ получения покровной композиции для мелованной бумаги (US 9718980, 2017). Сущность изобретения состоит в том, что состав для мелования бумаги или картона содержит нанофибриллярную целлюлозу, пигмент, латекс, вспомогательную добавку и воду.

В пересчете на сухую массу общей композиции содержание нанофибриллированной целлюлозы составляет от 0,02 до 10 частей, пигмента - от 75 до 95 частей, латекса - от 5 до 15 частей, а вспомогательной добавки - от 0,35 до 10 частей.

В качестве пигмента используют измельченный или осажденный карбонат кальция, каолин, тальк или любую их комбинацию. Латекс выбирают из группы, состоящей из бутадиен-стирольного латекса, полиуретановой эмульсии и любой их комбинации. Вспомогательную добавку выбирают из группы, состоящей из крахмала, пеногасителя, диспергаторов, модификатора реологии, отбеливающего агента, красителя и любой их комбинации. Нанофибриллярная целлюлоза представляет собой микрофибриллы из наноразмерной целлюлозы, дефибрированные из целлюлозных материалов. Нанофибриллярная целлюлоза состоит из микрофибрилл, которые имеют размеры от около 100 нм до около 2000 нм в длину и от около 3 нм до около 200 нм в диаметре. Меловальную композицию получают посредством одновременного смешения выше оговоренных компонентов.

Недостатки известного способа заключаются в недостаточно высоких показателях механической прочности и печатно-технических характеристик.

Техническая проблема данного изобретения заключается в повышении механических и печатно-технических свойств целевого продукта.

Указанная техническая проблема решается предлагаемым способом получения покровной композиции для мелованной бумаги, заключающимся в том, что проводят смешивание водной дисперсии нанофибриллярной целлюлозы с пигментом, представляющим собой смесь карбоната кальция и каолина с содержанием карбоната кальция 30-50% масс., диспергатором и антивспенивателем с получением модифицированного продукта, проводят смешивание связующего с водной суспензией нанофибриллярной целлюлозы с получением модифицированного связующего, после чего осуществляют смешивание модифицированного продукта с модифицированным связующим с получением целевой покровной композиции, имеющей следующий состав в расчете на сухой вес, % масс.:

- пигмент 69,0-76,7

- связующее 7,0-14,0

- диспергатор 0,5-1,5

- антивспениватель 0,3-0,9

- нанофибриллярная целлюлоза остальное, до 100,

при этом, при получении модифицированного продукта и модифицированного связующего нанофибриллярную целлюлозу используют в количестве 9,0-12,5% и 3,0-6,5% от общей массы покровной композиции, соответственно, и в качестве водной дисперсии нанофибриллярной целлюлозы используют водную дисперсию нанофибриллярной целлюлозы с дзета-потенциалом от минус 36 мВ до минус 200 мВ.

Достигаемый технический результат заключается в обеспечении проведения раздельного модифицирования пигмента и связующего нанофибриллярной целлюлозой, имеющей заданное значение дзета-потенциала, придающего образованной композиции повышенные механические и печатно-технические свойства за счет образования комплексных флокул в бумажной массе, имеющих значительный отрицательный заряд, что, в свою очередь, приводит к повышению седиментационной устойчивости покровной композиции, повышению адгезии покровной композиции к бумаге, регулированию водоудержания покровной композиции и, как следствие, расширению области применения покровной композиции при изготовлении мелованных видов бумаги.

Описываемый способ осуществляют следующим образом. При проведении описываемого способа используют следующие компоненты.

В качестве связующего используют, в частности, смесь дисперсии латекса и добавки, выбранной из ряда водных растворов полимеров, в частности, водного раствора крахмала, водного раствора натриевой соли карбоксиметилцеллюлозы, водного раствора полиакриламида, водного раствора поливинилового спирта или их смесей. При этом в качестве латекса возможно использовать, например, бутадиен-стирольный латекс, акрилатный латекс, метакрилатный латекс, стирол-акрилатный латекс, а также их смеси.

В качестве диспергатора используют, водные растворы анионных полимеров, в частности, водные растворы солей полимеров, несущих карбоксильные или сульфокислотные группы, например, водный раствор натриевой соли полиакриловой кислоты, водный раствор натриевой соли карбоксиметилцеллюлозы, водный раствор полистиролсульфоната натрия.

В качестве антивспенивателя используют, в частности, жирные кислоты, например, масляную кислоту или олеиновую кислоту, сложные эфиры жирных кислот, водные эмульсии кремнийорганических полимеров, в частности, водные эмульсии силиконовых масел, например, водную эмульсию полидиметилсилоксана. В случае использования антивспенивателя в виде эмульсии предпочтительно использовать эмульсию, содержащую эмульгатор для обеспечения ее стабильности. При этом возможно использовать любые известные эмульгаторы, в частности, неионогенные поверхностно-активные вещества, например, оксиэтилированные жирные кислоты.

Способ проводят следующим образом.

В реактор-смеситель, снабженный скоростной мешалкой и паровой рубашкой, подают заданное количество водной дисперсии нанофибриллярной целлюлозы с дзета-потенциалом от минус 36 мВ до минус 200 мВ. При этом концентрацию дисперсии нанофибриллярной целлюлозы в расчете на сухой вес целлюлозы выбирают, исходя из допустимой вязкости дисперсии и допустимого содержания воды в покровной композиции. Используют водную дисперсию нанофибриллярной целлюлозы с содержанием целлюлозы в расчете на сухой вес от 0,01 до 3,0% масс., предпочтительно от 0,1 до 2,5% масс., наиболее предпочтительно от 1,0 до 2,2% масс., например, 2,0% масс.

Затем при интенсивном перемешивании, в расчетном количестве, постепенно подают порошок пигмента - смесь карбоната кальция и каолина с содержанием карбоната кальция 30-50% масс. После завершения его подачи образованную дисперсию перемешивают 10-20 минут. По истечении указанного периода времени в образованную смесь вводят в заданных количествах диспергатор и антивспениватель и перемешивание продолжают еще 10-12 минут с получением модифицированного продукта. При необходимости (например, при заметном пенообразовании в ходе смешивания пигмента и водной дисперсии нанофибриллярной целлюлозы) возможно добавление антивспенивателя и диспергатора перед добавлением пигмента или же одновременно с добавлением пигмента.

Параллельно, в емкость, снабженную мешалкой, вводят расчетные количества связующего. При перемешивании к связующему добавляют заданное количество дисперсии нанофибриллярной целлюлозы с дзета-потенциалом от минус 36 мВ до минус 200 мВ и перемешивание продолжают в течение 10-12 минут с образованием модифицированного связующего. Используют водную дисперсию нанофибриллярной целлюлозы с содержанием целлюлозы в расчете на сухой вес от 0,01 до 3,0% масс., предпочтительно от 0,1 до 2,5% масс., наиболее предпочтительно от 1,0 до 2,2% масс., например, 2,0% масс.

После этого модифицированное связующее подают в реактор-смеситель, где осуществляют смешивание модифицированного продукта с модифицированным связующим. Затем полученную покровную композицию перемешивают в течение 20-30 минут.

Нанофибриллярную целлюлозу, имеющую заданное значение дзета-потенциала, возможно получать, в частности, путем обработки ее в водной дисперсии серной кислотой концентрацией 20-65% масс. и пероксидом водорода концентрацией 0,1-10,0% масс. в течение 0,1-5,0 часов с последующей промывкой водой до достижения дзета-потенциала нанофибриллярной целлюлозы от минус 36 до минус 200 мВ, предпочтительно от минус 40 до минус 90 мВ, а наиболее предпочтительно - от минус 45 до минус 71 мВ.

Физико-химические процессы, протекающие в ходе получения покровной композиции, заключаются в образовании комплексных флокул, имеющих значительный отрицательный заряд.

Так, при смешении водной дисперсии нанофибриллярной целлюлозы с заданным значением дзета-потенциала и пигмента происходит распределение частиц пигмента в водной дисперсии с одновременной адсорбцией мелких волокон нанофибриллярной целлюлозы на частицах пигмента и обволакиванием частиц пигмента крупными волокнами нанофибриллярной целлюлозы. В результате образуется стабильная водная дисперсия, включающая частицы пигмента и волокна нанофибриллярной целлюлозы. Применение диспергатора дополнительно способствует образованию стабильной водной дисперсии.

При смешении водной дисперсии нанофибриллярной целлюлозы с заданным значением дзета-потенциала и связующего происходит распределение частиц латекса в водной дисперсии с одновременной адсорбцией мелких волокон нанофибриллярной целлюлозы на частицах латекса и обволакиванием частиц латекса крупными волокнами нанофибриллярной целлюлозы. Применение в составе связующего водорастворимых полимеров дополнительно способствует образованию стабильной водной дисперсии.

Указанная модификация водных дисперсий пигмента и связующего позволяет проводить смешение пигмента и связующего без осложнений, связанных с флокуляцией частиц пигмента и связующего. При этом возможно регулировать соотношение пигмента и связующего в широких пределах, получая покровную композицию с требуемыми реологическими характеристиками, регулируемым водоудержанием и высокой стабильностью.

В процессе нанесения покровной композиции на бумагу происходит увеличение таких показателей, как сопротивление разрыву и прочность бумаги на излом (одни из основных показателей механической прочности мелованной бумаги). Причиной данного увеличения является проникновение связующего в структуру бумаги с образованием дополнительных связей между волокнами.

Модифицированный нанофибриллярной целлюлозой пигмент способствует созданию более эффективного покровного слоя на поверхности бумаги, обладающего повышенными барьерными свойствами и препятствующего проникновению влаги и жира, и вместе с тем обеспечивающего превосходные печатно-технические характеристики и высокую степень белизны бумаги.

К числу важных печатно-технических характеристик мелованной бумаги относятся такие показатели, как стойкость поверхности бумаги к выщипыванию и красковосприятие бумагой. Красковосприятие - свойство бумаги воспринимать определенное количество краски во время печати.

Количественной характеристикой красковосприятия служит толщина слоя краски, который определяется прочностью поверхности бумаги. К числу важных свойств печатных видов бумаги относится также показатель жесткости, обеспечивающий плоскостную устойчивость бумаги и возможность ее прохождения в многочисленных операциях печатного процесса. Мелование бумаги повышает ее жесткость.

По вышеописанной технологии проводят способ получения покровной композиции для мелованной бумаги (примеры 1-3), а затем определяют характеристики мелованной бумаги, полученной в идентичных условиях с применением покровных композиций, полученных известным и заявляемым способами.

Пример 1

В примере 1 в качестве пигмента используют смесь карбоната кальция и каолина с содержанием карбоната кальция 30% масс.

В качестве связующего используют смесь бутадиен-стирольного латекса с содержанием сухого остатка 48% масс. и водного раствора натриевой соли карбоксиметилцеллюлозы концентрацией 2,5% масс. Отношение латекса к натриевой соли карбоксиметилцеллюлозы составляет 8:1 в расчете на сухой вес.

В качестве диспергатора используют натриевую соль полиакриловой кислоты в виде водного раствора концентрацией 4% масс.

В качестве антивспенивателя используют 20%-ную эмульсию поли(диметилсилоксана), содержащую в качестве стабилизирующей добавки оксиэтилированные жирные кислоты.

Для получения модифицированного продукта и модифицированного связующего используют дисперсию нанофибриллярной целлюлозы концентрацией 2,0% масс. с дзета потенциалом нанофибриллярной целлюлозы минус 65 мВ.

При этом значение дзета-потенциала используемой водной дисперсии нанофибриллярной целлюлозы, равное минус 65 мВ, достигают предварительной химической обработкой. Химическую обработку нанофибриллярной целлюлозы проводят путем добавления к водной дисперсии нанофибриллярной целлюлозы водного раствора серной кислоты концентрацией 98% малыми порциями при перемешивании до достижения ее содержания в водной дисперсии 50% масс., затем к дисперсии добавляют водный раствор пероксида водорода концентрацией 37% масс. малыми порциями при перемешивании до достижения его содержания в водной дисперсии 0,5% масс., нагревают до температуры плюс 55°С, выдерживают при этой температуре в течение 3,5 часов, затем охлаждают до температуры плюс 20°С, промывают водой путем центрифугирования с отбрасыванием супернатанта, и получают, таким образом, концентрированную водную дисперсию обработанной нанофибриллярной целлюлозы с размером частиц 42,1 мкм (по лазерной дифракции) и с дзета-потенциалом, равным минус 65 мВ.

Дозировку компонентов рассчитывают на сухой вес. Для данного и последующих примеров дозировка компонентов указана в таблице.

Полученную покровную композицию фильтруют и контролируют в последней содержание сухих веществ. Готовую покровную композицию наносят на бумагу-основу массой 40 г/м2 на лабораторной установке ракеле Майера, после чего образцы с нанесенной покровной композицией помещают в сушильный шкаф при температуре 90-120°С. Вес наносимого покрытия после высушивания составляет 10 г/м2 на одну сторону. Характеристики полученной мелованной бумаги приведены в таблице.

Пример 2

Получение покровной композиции проводят аналогично примеру 1, но со следующими отличиями.

Используют связующее по примеру 1. Следует отметить, что использование других связующих (например, стирол-акрилатных латексов в составе связующих) приводит к аналогичным результатам при сравнении заявляемого и известного способа.

Для получения модифицированного продукта и модифицированного связующего используют водную дисперсию нанофибриллярной целллюлозы с дзета-потенциалом минус 45 мВ. При этом значение дзета-потенциала используемой водной дисперсии нанофибриллярной целлюлозы, равное минус 45 мВ достигают предварительной химической обработкой. Химическую обработку проводят путем добавления к водной дисперсии нанофибриллярной целлюлозы водного раствора серной кислоты концентрацией 98% малыми порциями при перемешивании до достижения ее содержания в водной дисперсии 45% масс., затем к дисперсии добавляют водный раствор пероксида водорода концентрацией 37% масс. малыми порциями при перемешивании до достижения его содержания в водной дисперсии 0,3% масс., нагревают до температуры плюс 45°С, выдерживают при этой температуре в течение 1,5 часов, затем охлаждают до температуры плюс 20°С, промывают водой путем центрифугирования с отбрасыванием супернатанта, и получают таким образом концентрированную водную дисперсию обработанной нанофибриллярной целлюлозы с дзета-потенциалом, равным минус 45 мВ.

С использованием полученной покровной композиции изготавливают образцы мелованной бумаги аналогично примеру 1. Характеристики полученной мелованной бумаги приведены в таблице.

Пример 3

Получение покровной композиции проводят аналогично примеру 1, но со следующими отличиями.

Используют связующее по примеру 1. Следует отметить, что использование других связующих (например, стирол-акрилатных латексов в составе связующих) приводит к аналогичным результатам при сравнении заявляемого и известного способа.

Для получения модифицированного продукта и модифицированного связующего используют водную дисперсию нанофибриллярной целллюлозы с дзета-потенциалом минус 71 мВ. При этом значение дзета-потенциала используемой водной дисперсии нанофибриллярной целлюлозы, равное минус 71 мВ достигают предварительной химической обработкой. Химическую обработку проводят путем добавления к водной дисперсии нанофибриллярной целлюлозы водного раствора серной кислоты концентрацией 98% малыми порциями при перемешивании до достижения ее содержания в водной дисперсии 55% масс., затем к дисперсии добавляют водный раствор пероксида водорода концентрацией 37% масс. малыми порциями при перемешивании до достижения его содержания в водной дисперсии 1,0% масс., нагревают до температуры плюс 55°С, выдерживают при этой температуре в течение 4 часов, затем охлаждают до температуры плюс 20°С, промывают водой путем центрифугирования с отбрасыванием супернатанта, и получают таким образом концентрированную водную дисперсию обработанной нанофибриллярной целлюлозы с дзета-потенциалом, равным минус 71 мВ.

С использованием полученной покровной композиции изготавливают образцы мелованной бумаги аналогично примеру 1. Характеристики полученной мелованной бумаги приведены в таблице.

Пример 4

Получают покровную композицию по известному способу (US 9718980, 2017).

С использованием полученной покровной композиции изготавливают образцы мелованной бумаги аналогично примеру 1. Характеристики полученной мелованной бумаги приведены в таблице.

В таблице приведены данные по составу полученных в результате проведения указанного способа в оговоренных выше режимных условиях, покровных композиций и данные по качеству полученных при этом композиций и мелованной бумаги с нанесенными указанными покровными композициями в сравнении с аналогичными данными покровной композиции, полученной известным способом (пример 4).

Проведение описываемого способа в иных условиях, входящих в интервал заявленных, приводит к аналогичным результатам, а в условиях, отличных от заявленных, не приводит к желаемым результатам.

Как следует из данных таблицы, описываемый способ позволяет получить покровную композицию для мелованной бумаги, обладающую повышенными качественными характеристиками. В частности, возрастает показатель - разрывная длина, повышаются такие характеристики, как статистическая вязкость, прочность на излом, число двойных перегибов, значение показателя - глянец (по Хантеру 75°), %, значение показателя - красковосприятие бумагой, Doтт.

Таким образом, заявляемый способ позволяет повысить механические и печатно-технические свойства целевого продукта.

Похожие патенты RU2725587C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ БУМАГИ 2019
  • Аникушин Борис Михайлович
  • Горбачевский Максим Викторович
  • Копицын Дмитрий Сергеевич
  • Константинова Светлана Алексеевна
  • Зуйков Александр Александрович
  • Лагута Евгений Алексеевич
  • Сухоруков Олег Геннадьевич
  • Новиков Андрей Александрович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Винокуров Владимир Арнольдович
RU2723819C1
Мелованный материал 1982
  • Гадуашвили Владимир Михайлович
  • Бондарев Анатолий Иванович
  • Иссерлис Виктор Иосифович
  • Шустер Валерий Наумович
  • Афонин Алексей Лазаревич
  • Федорова Тайгета Валериевна
  • Городнов Василий Дмитриевич
  • Прокофьева Мира Владимировна
  • Петренко Виталий Алексеевич
  • Фанов Юрий Александрович
  • Давыдова Валентина Ивановна
  • Кашюба Витаутас Юозович
  • Попов Лев Сергеевич
  • Славинскас Юозас Юозович
SU1033616A1
СПОСОБ МОДИФИКАЦИИ МЕМБРАН ДЛЯ УЛЬТРАФИЛЬТРАЦИИ ВОДНЫХ СРЕД 2019
  • Анохина Татьяна Сергеевна
  • Борисов Илья Леонидович
  • Василевский Владимир Павлович
  • Волков Алексей Владимирович
  • Петрова Дарья Андреевна
  • Новиков Андрей Александрович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Винокуров Владимир Арнольдович
RU2719165C1
СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗОСОДЕРЖАЩЕГО ГЕЛЯ 2018
  • Новиков Андрей Александрович
  • Аникушин Борис Михайлович
  • Горбачевский Максим Викторович
  • Копицын Дмитрий Сергеевич
  • Котелев Михаил Сергеевич
  • Попова Ольга Владимировна
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Винокуров Владимир Арнольдович
RU2692349C1
КОМПОЗИЦИЯ ДЛЯ МЕЛОВАНИЯ БУМАГИ С УСОВЕРШЕНСТВОВАННЫМИ НОСИТЕЛЯМИ ДЛЯ ОПТИЧЕСКИХ ОТБЕЛИВАТЕЛЕЙ 2000
  • Эрик Ф. Бок
  • Чарлз Л. Бэрдик
  • Л. Дрейк Уолш
RU2245952C2
Мелованная бумага 1980
  • Бондарев Анатолий Иванович
  • Терехина Ирина Леонидовна
  • Громов Валерий Викторович
  • Розенберг Марк Эдуардович
  • Никитина Стелла Гесиевна
  • Мнацаканов Сурен Саркисович
  • Колосов Юрий Николаевич
SU903433A1
Композиция для мелового слоя фотобумаги 1975
  • Хельфрид Кунат
  • Бернд Райнхардт
SU1097571A1
Способ получения высококонцентрированной покровной композиции для изготовления мелованной бумаги 1988
  • Бондарев Анатолий Иванович
  • Разинькова Татьяна Сергеевна
  • Паршиков Генадий Дмитриевич
  • Одинцов Юрий Анатольевич
SU1585421A1
КОМПОЗИЦИЯ МЕЛОВАЛЬНОГО ПИГМЕНТА И БУМАГА ИЛИ КАРТОН, ИМЕЮЩИЕ ПОКРЫТИЕ ИЗ НЕЕ 2009
  • Ахльгрен Йонни
  • Матула Антти
  • Туркки Тарья
RU2528639C2
СОСТАВ ДЛЯ ОБЛАГОРАЖИВАНИЯ ВОЛОКНИСТОГО МАТЕРИАЛА 2006
  • Мазитов Леонид Асхатович
  • Бондарев Анатолий Иванович
  • Тюрин Евгений Тимофеевич
  • Осипов Павел Васильевич
  • Зубарев Владимир Михайлович
  • Опарин Владимир Петрович
  • Фадеева Лилия Анатольевна
  • Алескерова Татьяна Федоровна
RU2324782C2

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ ПОКРОВНОЙ КОМПОЗИЦИИ ДЛЯ МЕЛОВАННОЙ БУМАГИ

Изобретение относится к способу получения покровной композиции для мелованной бумаги. Способ заключается в смешивании модифицированного продукта и модифицированного связующего. Модифицированный продукт получен смешиванием водной дисперсии нанофибриллярной целлюлозы с пигментом, представляющим собой смесь карбоната кальция и каолина с содержанием карбоната кальция 30-50 мас.%, с диспергатором и антивспенивателем. Модифицированное связующее получено смешиванием связующего с водной суспензией нанофибриллярной целлюлозы. Покрывную композицию получают смешиванием модифицированного продукта с модифицированным связующим, имеющую следующий состав в расчете на сухой вес, мас.%: пигмент 69,0-76,7; связующее вещество 7,0-14,0; диспергатор; 0,5-1,5; антивспениватель 0,3-0,9; нанофибриллярная целлюлоза - остальное, до 100. При этом при получении модифицированного продукта и модифицированного связующего используют нанофибриллярную целлюлозу с дзета-потенциалом от минус 36 мВ до минус 200 мВ в количестве 9,0-12,5% и 3,0-6,5% от общей массы покровной композиции в расчете на сухой вес. Изобретение позволяет повысить седиментационную устойчивость покровной композиции, повысить адгезию покровной композиции к бумаге, регулировать водоудержание покровной композиции. Бумага полученная с использованием покровной композиции обладает повышенными механическими и печатно-техническими свойствами. 1 табл.

Формула изобретения RU 2 725 587 C1

Способ получения покровной композиции для мелованной бумаги, заключающийся в том, что проводят смешивание водной дисперсии нанофибриллярной целлюлозы с пигментом, представляющим собой смесь карбоната кальция и каолина с содержанием карбоната кальция 30-50 мас.%, диспергатором и антивспенивателем с получением модифицированного продукта, проводят смешивание связующего с водной суспензией нанофибриллярной целлюлозы с получением модифицированного связующего, после чего осуществляют смешивание модифицированного продукта с модифицированным связующим с получением целевой покровной композиции, имеющей следующий состав в расчете на сухой вес, мас.%:

- пигмент 69,0-76,7

- связующее 7,0-14,0

- диспергатор 0,5-1,5

- антивспениватель 0,3-0,9

- нанофибриллярная целлюлоза остальное, до 100,

при этом при получении модифицированного продукта и модифицированного связующего нанофибриллярную целлюлозу используют в количестве 9,0-12,5% и 3,0-6,5% от общей массы покровной композиции, соответственно, и в качестве водной дисперсии нанофибриллярной целлюлозы используют водную дисперсию нанофибриллярной целлюлозы с дзета-потенциалом от минус 36 мВ до минус 200 мВ.

Документы, цитированные в отчете о поиске Патент 2020 года RU2725587C1

ПОКРОВНАЯ КОМПОЗИЦИЯ НА ВОДНОЙ ОСНОВЕ, ПРИМЕНЕНИЕ ТАКОЙ КОМПОЗИЦИИ, СПОСОБ ПОКРЫТИЯ ПОДЛОЖКИ С ПРИМЕНЕНИЕМ ТАКОЙ КОМПОЗИЦИИ И ПОКРЫТЫЕ ПОДЛОЖКИ 2015
  • Ли Чжэн
  • Чэн Гуйгуан
  • Чоудэри Риаз Ахмад
  • Хэ Йе
  • Чэнь Лин
RU2696453C2
US 9718980 B2, 01.08.2017
WO 2018116223 A1, 28.06.2018
WO 1993011183 A1, 10.06.1993
СПОСОБ РЕГЕНЕРАЦИИ КОСТНОЙ ТКАНИ В ЭКСПЕРИМЕНТЕ 2003
  • Девятов Ф.В.
  • Холмогорцев Е.Г.
RU2248210C1

RU 2 725 587 C1

Авторы

Аникушин Борис Михайлович

Горбачевский Максим Викторович

Копицын Дмитрий Сергеевич

Константинова Светлана Алексеевна

Зуйков Александр Александрович

Лагута Евгений Алексеевич

Сухоруков Олег Геннадьевич

Новиков Андрей Александрович

Гущин Павел Александрович

Иванов Евгений Владимирович

Винокуров Владимир Арнольдович

Даты

2020-07-02Публикация

2019-12-30Подача