Способ получения функционализированной минералами структурированной воды Российский патент 2020 года по МПК A23L2/38 A23L2/52 

Описание патента на изобретение RU2725736C1

Изобретение относится к пищевой и фармацевтической промышленности и позволяет получить функционализированную минералами и структурированную биологически воду, максимально возможно сбалансированную по минеральному составу и проявляющую разнообразную биологическую активность.

Изобретение позволяет разработать высокоэффективный, экономный и простой способ получения биологически активной (обогащенной водорастворимыми минералами) структурированной воды со сбалансированным минеральным составом.

Известен сухой безалкогольный напиток [1], содержащий витамины В1, С, РР, В5, В6, лимонную кислоту, пантогематоген, экстракт левзеи, плодовый экстракт, ароматизатор, сахар, мальтодекстрин, микроэлементы (Mg, Na, K).

Недостатком известного напиток является его ориентированность лишь на определенные группы людей (спортсменов, подверженных тяжелым физическим нагрузкам), при этом свойства напитка, направленные на оздоровление организма и профилактику возможных заболеваний, являются ограниченными.

Известен напиток [2], содержащий в четырех вариантах, по крайней мере, один витамин из ряда: А, Н, В1, В2, В3, В5, В6, В9, В15, В12, D, Е, С, Р, К, макроэлементы, микроэлементы, янтарную кислоту и/или сукцинаты янтарной кислоты и воду, взятые в определенном соотношении.

Недостатком напитка является несбалансированный витаминно-элементный состав, из-за чего в случае его систематического чрезмерного употребления возможны реакции гипервитаминоза, а также отсутствие жизненно важных макро- и микроэлементов.

Наиболее близким к изобретению является напиток, [3] - прототип, содержащий сок, микроэлементы, витаминный комплекс, включающий витамины В1, В2, В6, B12, D, Е, С, Р, К, ниацин и воду. В качестве микроэлементов напиток может содержать магний или кальций и магний, или цинк, или железо.

Главным недостатком прототипа, а также общим недостатком всех известных композиций является пренебрежение нормами суточных потребностей для различных возрастных групп мужчин и женщин, и совместимостью используемых микроэлементов. Употребление неправильно сбалансированных по микроэлементному составу композиций может привести к недостаточности минеральных веществ, а также к обострению хронических заболеваний желудочно-кишечного тракта, за счет антагонистического и синергического эффектов взаимодействия используемых микронутриентов.

Таким образом, задачей, на решение которой направлено данное изобретение является разработка высокоэффективного, экономного и простого способа получения функционализированной (обогащенной водорастворимыми минералами) воды со сбалансированным минеральным составом с возможностью применения в пищевой и фармацевтической промышленности.

Это достигается тем, что способ получения функционализированной минералами структурированной воды, предусматривающий добавление к воде обогащающих ингредиентов (минералов), отличается тем, что в качестве воды используют артезианскую или талую или дистиллированную или бидистиллированную воду, а в качестве обогащающих ингредиентов используют сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), аммония молибдат ((NH4)2MoO4) или натрия молибдат (Na2MoO4) или аммония молибдата тетрагидрат ((NH4)6Mo7O24⋅4H2O) - источник молибдена (Мо6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) - источник кобальта (Со2+), борная кислота (H3BO3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+), которые вносят в воду в следующем соотношением:

тщательным перемешиванием обогащающих ингредиентов в воде в течение 5-10 мин при частоте вращении мешалки 50-100 об/мин и последующей структуризацией обогащенной воды в результате воздействия магнитного поля с использованием постоянных магнитов с индукцией В=150-200 мТл или прибора для омагничивания воды МУМ-50 ЭДМА, с дальнейшим одно- или многократным замораживанием при температуре -70°С и ниже и оттаивания при температуре не выше +10°С.

Способ реализуется следующим образом.

В качестве воды (основного компонента) использовали согласно техническим нормативным правовым актам (ТНПА):

артезианскую воду или

талую воду или

дистиллированную воду или

бидистиллированную воду.

В качестве обогащающих ингредиентов использовали:

1. Водорастворимые макроэлементы:

магний (Mg2+) в виде сульфата магния (MgSO4) по ТНПА.

2. Водорастворимые микроэлементы:

молибден (Мо6+) в виде аммония молибдата ((NH4)2MoO4) по ТНПА или натрия молибдата (Na2MoO4) по ТНПА или аммония молибдата тетрагидрат ((NH4)6Mo7O24⋅4H2O) по ТНПА,

кобальт (Со2+) в виде хлорида кобальта (CoCl2) по ТНПА,

медь (Cu2+) в виде сульфата меди (CuSO4) по ТНПА,

цинк (Zn2+) в виде сульфата цинка (ZnSO4) по ТНПА,

железо (Fe2+) в виде сульфата железа (FeSO4) по ТНПА,

марганец (Mn2+) в виде сульфата марганца (MnSO4) по ТНПА,

фтор (F-) в виде натрия фторида (NaF) по ТНПА,

бор (В3+) в виде борной кислоты (Н3ВО3) по ТНПА,

никель (Ni2+) в виде сульфата никеля (NiSO4) по ТНПА,

ванадий (V5+) в виде аммония метаванадата (NH4VO3) по ТНПА.

В таблице 1 и 2 приведены основные характеристики и ориентировочная суточная потребность водорастворимых минералов. В таблице 3 показаны основные водорастворимые формы минералов (макро- и микроэлементов).

На начальном этапе проверяют качество обогащающих ингредиентов (водорастворимых солей макро- и микроэлементов). Из водорастворимых солей макро- и микроэлементов готовят смесь при следующем соотношении обогащающих ингредиентов:

Количество обогащающего ингредиента (ν) в молях рассчитывают по формуле (1):

где ν - количество вещества, моль;

m - масса вещества, г;

М - молекулярная масса вещества, г/моль.

После приготовления нужной смеси обогащающих ингредиентов осуществляют их добавление в подготовленную воду. Перед обогащением проверяют качество воды. Воду с обогащающими ингредиентами (водорастворимыми макро- и микроэлементами) тщательно перемешивают в реакторе-смесителе в течение 5-10 мин при частоте вращении мешалки 50-100 об/мин.

Далее проводят процесс структуризации обогащенной воды (т.е. активации воды), осуществляемый в результате одно- или многократного замораживания при температуре -70°С и ниже и последующего оттаивания (размораживания) при температуре не выше +10°С.

В соответствии с существующими на сегодняшний день представлениями о кластерно-фрактальной модели воды, структурированная вода, содержащаяся в растениях и организме, качественно отличается от обычной. Она обладает той же структурой, что и вода в замерзшем состоянии. Именно гексагональные ледяные кластеры предотвращают образование плотной неупорядоченной структуры воды, которая не подходит для эффективного взаимодействия с биомолекулами. При растворении в структурированной воде биомолекулы переходят в родственную для них среду и остаются в нативном виде.

Получить структурированную воду можно при оттаивании снега, льда, замораживании-оттаивании воды или при использовании специализированных приборов для структурирования воды. Известно, что талая вода, возникающая при таянии льда, содержит повышенное число льдообразных кластеров. Она является мощным биологическим стимулятором для живых систем и поэтому получила название «живой воды». Этот эффект структурированной воды объясняют с позиции ее лучшей усвояемости организмом, поскольку кластеры, сформировавшиеся в ней из водных тетраэдров, являются поставщиками готовых структурных оснований для построения и обновления гидратных оболочек вокруг биосубстратов. Организм при этом получает необходимую для своей жизнедеятельности воду с оптимальными структурно-информационными свойствами. Показано, что систематическое употребление структурированной воды приводит к нормализации сна, снижению уровня холестерина в крови, нормализация кислотно-щелочного баланса, выведению токсинов, нормализации обмена веществ.

На фиг. 1 представлено уникальное строение молекулы воды (H2O) и особенности ее поведения в магнитном поле.

В молекуле воды (H2O) атом кислорода имеет четыре электронные пары, две из которых участвуют в образовании двух полярных ковалентных связей Н-О, т.е. являются связывающими, а две другие - являются несвязывающими (фиг. 1). Ковалентные связи воды образованы за счет перекрывания двух одноэлектронных р-облаков атома кислорода и одноэлектронных s-облаков двух атомов водорода. Угол между связями в молекуле воды 104,5°. В молекуле воды имеется четыре полюса зарядов: два - положительных и два - отрицательных. Положительные заряды сосредоточены у атомов водорода, т.к. кислород электроотрицательней водорода. Два отрицательных полюса приходятся на две несвязывающие электронные пары кислорода. Молекула воды является диполем и дипольный момент молекулы воды равен 1,84 Д.

При движении потока молекул воды (диполей) в магнитном поле перпендикулярно силовым линиям магнитного поля, вдоль оси Y (см. вектор V) возникает момент сил F1, F2 (сила Лоренса), пытающихся развернуть молекулу в горизонтальной плоскости (фиг. 1). При движении диполя в горизонтальной плоскости, вдоль оси Z, возникает момент сил в вертикальной плоскости. Полюса магнита препятствуют повороту диполя молекулы; поэтому движение молекул перпендикулярно линиям магнитного поля будет тормозиться. Это приводит к тому, что для диполя, помещенного между двумя полюсами магнита остается только одна степень свободы - колебание вдоль оси X - силовых линий приложенного магнитного поля. По всем остальным координатам движение диполей воды ограничивается: они становятся зажатыми между полюсами магнита, совершая колебательные движения относительно оси X. Определенное положение диполей молекул воды в магнитном поле вдоль силовых линий поля будет сохраняться, тем самым упорядочивая их ориентацию в магнитном поле.

В результате после воздействия на воду магнитного поля омагниченная вода становится более структурированной, чем вода обычная. В ней увеличивается скорость химических реакций и кристаллизации растворенных веществ, интенсифицируются процессы адсорбции, улучшается коагуляция примесей и выпадение их в осадок.

Употребление внутрь омагниченной воды повышает проницаемость биологических мембран тканевых клеток, снижает количество холестерина в крови и печени, регулирует артериальное давление, повышает обмен веществ, способствует выделению мелких камней из почек. Были отмечены положительные результаты и при лечении омагниченной водой больных, страдающих экземой и различными заболеваниями кожи - дерматитами. Поскольку омагниченная вода оказывает нормализующее действие на нарушенный холестериновый обмен при атеросклерозе и положительно влияет на течение заболевания, то ряд ученых рекомендует пить ее не только в лечебных целях, но и для профилактики атеросклероза.

Далее приведены примеры конкретного выполнения изобретения.

Пример 1. Вода функционализированная минералами и структурированная .

В качестве воды используют артезианскую воду.

В качестве обогащающих ингредиентов используют: сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), аммония молибдат ((NH4)2MoO4) - источник молибдена (Мо6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) - источник кобальта (Со2+), борная кислота (Н3ВО3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+).

с последующим тщательным перемешиванием в течение 5 мин при частоте вращении мешалки 50 об/мин и дальнейшей структуризацией обогащенной воды в результате омагничевания воды с использованием постоянных магнитов с индукцией В=200 мТл, а также однократного замораживания при температуре -75°С и оттаивания при температуре +10°С.

Рекомендуется употреблять в сутки не более 500 мл воды функционализированной минералами и структурированной. В качестве ограничительного обогащающего ингредиента выбран микроэлемент - ванадий (V5+), вносимый в виде соли аммония метаванадата (NH4VO3) в количестве 0,12 мг/л (суточная потребность 0,025 мг).

Пример 2. Вода функционализированная минералами и структурированная .

В качестве воды используют дистиллированную воду.

В качестве обогащающих ингредиентов используют: сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), аммония молибдата тетрагидрат ((NH4)6Mo7O24⋅4H2O) - источник молибдена (Mo6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) - источник кобальта (Со2+), борная кислота (Н3ВО3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+).

с последующим тщательным перемешиванием в течение 10 мин при частоте вращении мешалки 100 об/мин и дальнейшей структуризацией обогащенной воды в результате омагничевания воды с использованием постоянных магнитов с индукцией В=150 мТл, а также двухкратного замораживания при температуре -70°С и оттаивания при температуре +4°С.

Рекомендуется употреблять в сутки не более 500 мл воды функционализированной минералами и структурированной. В качестве ограничительного обогащающего ингредиента выбран микроэлемент - ванадий (V5+), вносимый в виде соли аммония метаванадата (NH4VO3) в количестве 0,12 мг/л (суточная потребность 0,025 мг).

Пример 3. Вода функционализированная минералами и структурированная .

В качестве воды используют талую воду.

В качестве обогащающих ингредиентов используют: сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), натрия молибдат (Na2MoO4) - источник молибдена (Мо6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) -источник кобальта (Со2+), борная кислота (H3BO3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+).

с последующим тщательным перемешиванием в течение 8 мин при частоте вращении мешалки 80 об/мин и дальнейшей структуризацией обогащенной воды в результате омагничевания воды с использованием постоянных магнитов с индукцией В=175 мТл, а также трехкратного замораживания при температуре -90°С и оттаивания при температуре +9°С.

Рекомендуется употреблять в сутки не более 500 мл воды функционализированной минералами и структурированной. В качестве ограничительного обогащающего ингредиента выбран микроэлемент - ванадий (V5+), вносимый в виде соли аммония метаванадата (NH4VO3) в количестве 0,12 мг/л (суточная потребность 0,025 мг).

Пример 4. Вода функционализированная минералами и структурированная .

В качестве воды используют бидистиллированную (дважды дистиллированную) воду.

В качестве обогащающих ингредиентов используют: сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), аммония молибдат ((NH4)2MoO4) - источник молибдена (Мо6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) - источник кобальта (Со2+), борная кислота (H3BO3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+).

с последующим тщательным перемешиванием в течение 9 мин при частоте вращении мешалки 78 об/мин и дальнейшей структуризацией обогащенной воды в результате омагничевания воды с использованием прибора МУМ-50 ЭДМА, а также однократного замораживания при температуре -80°С и оттаивания при температуре +3°С и однократного замораживания при температуре -70°С и оттаивания при температуре не выше +4°С.

Рекомендуется употреблять в сутки не более 500 мл воды функционализированной минералами и структурированной. В качестве ограничительного обогащающего ингредиента выбран микроэлемент - ванадий (V5+), вносимый в виде соли аммония метаванадата (NH4VO3) в количестве 0,12 мг/л (суточная потребность 0,025 мг).

Микроэлементы играют важную роль в поддержании биологического равновесия организма. Большинство из них, в первую очередь, находится в клетках в виде кофакторов ферментов, обеспечивая их каталитическую активность, но они играют роль также в стабилизации структур макромолекул не ферментного типа, а также в нормализации поддержания уровня витаминов и гормонов в организме человека.

Даже незначительный дефицит может неблагоприятно повлиять, например, на нормальную деятельность иммунной системы, на физическое и общее состояние организма, на процесс выздоровления после болезни или хирургического вмешательства, на полное выздоровление организма.

Функционализированная минералами вода содержат большинство важнейших микроэлементов. Целью ее применения является возмещение дефицитных количеств микроэлементов, необходимых для нормального протекания биохимических процессов, зависимых от микроэлементов, в случаях.

Предлагаемая нами функционализированная минералами вода, восполняет дефицит микро- и макроэлементов, а также активно регулирует метаболические процессы организма (табл. 2). Так, цинк является важным компонентом ряда ферментов, в т.ч. карбоксипептидазы, оксидоредуктазы, трансферазы, алкогольдегидрогеназы; играет важную роль в функционировании Т-лимфоцитов и участвует в метаболизме липидов и белков; обладает антиоксидантной и иммуностимулирующей активностью. Железо участвует в эритропоэзе, в составе гемоглобина обеспечивает транспорт кислорода в ткани и удаление из ткани углекислого газа, предупреждает развитие анемии. Фтор необходим для минерализации костей и зубов. Медь участвует в тканевом дыхании, кроветворении, иммунных реакциях. Марганец влияет на развитие костной ткани, участвует в тканевом дыхании, иммунных реакциях. Молибден участвует в окислительно-восстановительных реакциях, может действовать как ферментный кофактор. Ванадий способствует сохранению стабильного состояния гемоглобина, участвует в процессах роста и репродуктивной функции. Никель является важным элементом, входящим в состав биологических систем. Кобальт, являясь компонентом витамина B12 и гормона инсулин, участвует в выработке гормонов щитовидной железы, белков (в первую очередь), жиров и углеводов, в ферментативных процессах (является активатором ферментов), регулирует обмен холестерина, участвует в выработке PHK и ДНK, содействует росту костной ткани, стимулирует синтез гемоглобина и повышает усвоение железа, а также повышает активность лейкоцитов.

Воду функционализированную минералами рекомендуется пить при заболеваниях и состояниях, сопровождающиеся повышенной потребностью в микроэлементах или недостаточным поступлением микроэлементов с пищей:

неполноценное питание (в т.ч. при специальных диетах, сахарном диабете, вегетарианском питании);

повышенная физическая нагрузка, интенсивные занятия спортом;

повышенная утомляемость, общая слабость, отсутствие аппетита, бессонница;

период реконвалесценции после инфекционно-воспалительных заболеваний, операций;

период менструаций.

Следует избегать одновременного приема функционализированной минералами воды с другими препаратами, содержащими микроэлементы. Между приемом функционализированной минералами воды и лекарственными средствами необходим интервал не менее 1 час. Не рекомендуется пить воду вместе с молоком или кофе, так как при этом ухудшается всасывание компонентов.

Воду функционализированную минералами рекомендуется хранить при температуре от +15° до +25°С, срок годности - 4 года. После вскрытия бутылки с водой, ее содержимое должно быть использовано в течение 1 месяца.

Таким образом, предлагаемое изобретение позволяет получать высокоэффективного, экономного и простого способа получения функционализированная минералами воды , обогащенной водорастворимыми минералами: сульфатом цинка (ZnSO4) - источник цинка (Zn2+), сульфатом марганца (MnSO4) - источник марганца (Mn2+), сульфатом железа (FeSO4) - источник железа (Fe2+), аммония молибдатом ((NH4)2MoO4) или натрия молибдат (Na2MoO4) или аммония молибдата тетрагидрат ((NH4)6Mo7O24⋅4H2O) - источник молибдена (Мо6+), сульфатом никеля (NiSO4) - источник никеля (Ni2+), сульфатом меди (CuSO4) - источник меди (Cu2+), хлоридом кобальта (CoCl) - источник кобальта (Со2+), борной кислотой (H3BO3) - источник бора (В3+), натрия фторидом (NaF) - источник фтора (F-), сульфатом магния (MgSO4) - источник магния (Mg2+), аммония метаванадатом (NH4VO3) - источник ванадия (V5+), т.е. максимально сбалансированным минеральным составом и возможностью широкого применения в пищевой и фармацевтической промышленности. Кроме того, в предлагаемой воде молекулы определенным образом ориентированы и имеется необходимая кластерная структура в результате проведенной двойной структуризационной обработке магнитным полем и замораживанием-оттаиванием.

Источники информации, принятые во внимание при оформлении заявки: 1. Кошелев, Ю.А. Сухой безалкогольный напиток: Патент №2494653. RU, МПК7 A23L 2/52, A23L 2/56, A23L 2/60 / Ю.А. Кошелев, А.С. Залесов; заявка №2011142583/13; патентообладатель: ЗАО «Алтайвитамины». - заявл. 20.10.2011; опубл. 10.10.2013 // Государственный реестр изобретений Российской Федерации. - 2013.

2. Костин, О.Г. Безалкогольный напиток (варианты): Патент №2422052. RU, МПК7 A23L 2/38 / О.Г. Костин; заявка №2009118121/13; патентообладатель: О.Г. Костин. - заявл. 12.05.2009; опубл. 27.06.2011 // Государственный реестр изобретений Российской Федерации. - 2011.

3. Бобылев, С.В. Безалкогольный напиток: Патент №2202257. RU, МПК7 A23L 2/00, A23L 2/02, A23L 2/38, A23L 2/52 / С. В. Бобылев; заявка №2001107551/13; патентообладатель: ООО «ФКПЧФ Бобимэкс тм». - заявл. 22.03.2001; опубл. 20.04.2003 // Государственный реестр изобретений Российской Федерации. - 2003.

Похожие патенты RU2725736C1

название год авторы номер документа
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И СПОСОБ ВОЗДЕЙСТВИЯ НА РЕТИКУЛОЭНДОТЕЛИАЛЬНУЮ СИСТЕМУ, ЛЕЧЕНИЯ МУКОВИСЦИДОЗА И ХРОНИЧЕСКИХ БОЛЕВЫХ СИНДРОМОВ, СОПРОВОЖДАЮЩИХ ЗАБОЛЕВАНИЯ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА И ОНКОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ 1992
  • Йожеф Береш[Hu]
  • Йожеф Береш[Hu]
RU2093160C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО РАСТВОРА МИНЕРАЛЬНОГО УДОБРЕНИЯ ДЛЯ ВНЕКОРНЕВОЙ ОБРАБОТКИ РАСТЕНИЙ 2008
  • Лосев Владимир Александрович
RU2407722C2
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА МИНЕРАЛЬНОГО УДОБРЕНИЯ "МЕГАВИТ-Н" ДЛЯ НЕКОРНЕВОЙ ПОДКОРМКИ РАСТЕНИЙ 2015
  • Лосев Ярослав Владимирович
RU2601975C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОЙ МИКРОЭЛЕМЕНТНОЙ СМЕСИ "КОМПЛЕКС" 2014
  • Лембриков Владимир Михайлович
  • Левин Борис Владимирович
  • Токмакова Татьяна Васильевна
  • Буркова Марина Николаевна
  • Гриценко Людмила Сергеевна
  • Киселева Ольга Васильевна
  • Волкова Валентина Вячеславовна
  • Афанасьева Лидия Гавриловна
RU2580962C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО РАСТВОРА МИНЕРАЛЬНОГО УДОБРЕНИЯ ДЛЯ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 2008
  • Лосев Владимир Александрович
RU2407287C2
КОМПЛЕКСНОЕ МИКРОУДОБРЕНИЕ ДЛЯ ПОДКОРМКИ ВАЛЕРИАНЫ ЛЕКАРСТВЕННОЙ 2002
  • Горохова Т.А.
  • Фурса Н.С.
  • Степанок В.В.
  • Онегин С.В.
  • Коротаева М.С.
  • Трубников А.А.
  • Марсов Н.Г.
RU2230720C1
Способ получения низкобелковых макаронных изделий 2019
  • Литвяк Владимир Владимирович
  • Шилов Валерий Викентьевич
  • Гоман Дмитрий Иосифович
  • Белякова Наталья Иосифовна
  • Росляков Юрий Федорович
  • Шмалько Наталья Анатольевна
  • Артюх Юлия Анатольевна
  • Шемшелева Анна Михайловна
RU2752901C2
Питательный раствор для гидропонного выращивания сельскохозяйственных культур 2022
  • Никулина Елена Аркадьевна
  • Цирульникова Нина Владимировна
  • Семенова Наталья Александровна
  • Годяева Мария Михайловна
  • Фетисова Татьяна Сергеевна
  • Дорохов Алексей Семенович
  • Ретивов Василий Михайлович
RU2794787C1
СПОСОБ ПОЛУЧЕНИЯ ПИТАТЕЛЬНЫХ РАСТВОРОВ, СОДЕРЖАЩИХ МИКРОЭЛЕМЕНТЫ (МИКРОВИТ) 2001
  • Пермитина Г.В.
RU2179162C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ЭЛЕКТРОДНОГО МАТЕРИАЛА НА ОСНОВЕ КОБАЛЬТ ВАНАДИЕВОГО ОКСИДА И ОКСИДНЫХ СОЕДИНЕНИЙ МОЛИБДЕНА 2014
  • Храменкова Анна Владимировна
  • Беспалова Жанна Ивановна
RU2570070C1

Иллюстрации к изобретению RU 2 725 736 C1

Реферат патента 2020 года Способ получения функционализированной минералами структурированной воды

Изобретение относится к пищевой и фармацевтической промышленности. Предложен способ получения обогащенной минералами питьевой воды, предусматривающий добавление к воде обогащающих водорастворимых макро- и микроэлементов, при этом в качестве воды используют артезианскую, или талую, или дистиллированную, или бидистиллированную воду, а в качестве водорастворимых обогащающих ингредиентов используют сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), аммония молибдат ((NH4)2MoO4), или натрия молибдат (Na2MoO4), или аммония молибдата тетрагидрат ((NH4)6Mo7O24⋅4H2O) - источник молибдена (Мо6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) - источник кобальта (Со2+), борную кислоту (Н3ВО3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+), которые вносят в воду в следующем исходном соотношении, мг/л: сульфат цинка 1,1; сульфат марганца 0,31; сульфат железа 2; аммония молибдат, или натрия молибдат, или аммония молибдата тетрагидрат 0,19; сульфат никеля 0,11; сульфат меди 0,25; хлорид кобальта 0,025; борная кислота 0,1; натрия фторид 0,09; сульфат магния 0,4; аммония метаванадат 0,12, после чего проводят тщательное перемешивание обогащающих ингредиентов в воде в течение 5-10 мин при частоте вращения мешалки 50-100 об/мин, и последующую обработку обогащенной воды путем воздействия магнитного поля постоянных магнитов с индукцией В=150-200 мТл или прибора для омагничивания воды, и дальнейшее замораживание при температуре -70°С и ниже, и оттаивание при температуре не выше +10°С. Изобретение позволяет разработать высокоэффективный, экономный и простой способ получения биологически активной, обогащенной водорастворимыми минералами воды со сбалансированным минеральным составом. 1 ил., 4 табл., 4 пр.

Формула изобретения RU 2 725 736 C1

Способ получения обогащенной минералами питьевой воды, предусматривающий добавление к воде обогащающих водорастворимых макро- и микроэлементов, характеризующийся тем, что в качестве воды используют артезианскую, или талую, или дистиллированную, или бидистиллированную воду, а в качестве водорастворимых обогащающих ингредиентов используют сульфат цинка (ZnSO4) - источник цинка (Zn2+), сульфат марганца (MnSO4) - источник марганца (Mn2+), сульфат железа (FeSO4) - источник железа (Fe2+), аммония молибдат ((NH4)2MoO4), или натрия молибдат (Na2MoO4), или аммония молибдата тетрагидрат ((NH4)6Mo7O24⋅4H2O) - источник молибдена (Мо6+), сульфат никеля (NiSO4) - источник никеля (Ni2+), сульфат меди (CuSO4) - источник меди (Cu2+), хлорид кобальта (CoCl2) - источник кобальта (Со2+), борную кислоту (Н3ВО3) - источник бора (В3+), натрия фторид (NaF) - источник фтора (F-), сульфат магния (MgSO4) - источник магния (Mg2+), аммония метаванадат (NH4VO3) - источник ванадия (V5+), которые вносят в воду в следующем исходном соотношении, мг/л:

сульфат цинка 1,1 сульфат марганца 0,31 сульфат железа 2 аммония молибдат, или натрия молибдат, или аммония молибдата тетрагидрат 0,19 сульфат никеля 0,11 сульфат меди 0,25 хлорид кобальта 0,025 борная кислота 0,1 натрия фторид 0,09 сульфат магния 0,4 аммония метаванадат 0,12

после чего проводят тщательное перемешивание обогащающих ингредиентов в воде в течение 5-10 мин при частоте вращения мешалки 50-100 об/мин, и последующую обработку обогащенной воды путем воздействия магнитного поля постоянных магнитов с индукцией В=150-200 мТл или прибора для омагничивания воды, и дальнейшее замораживание при температуре -70°С и ниже, и оттаивание при температуре не выше +10°С.

Документы, цитированные в отчете о поиске Патент 2020 года RU2725736C1

ИСКУССТВЕННО МИНЕРАЛИЗОВАННАЯ ПИТЬЕВАЯ ВОДА, СОСТАВ ДЛЯ ЕЕ ПРИГОТОВЛЕНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Хусаинова Яна Тагировна
RU2425595C2
СПОСОБ МИНЕРАЛИЗАЦИИ ПИТЬЕВОЙ ВОДЫ ИЗ ДИСТИЛЛЯТА 2007
  • Друзьяк Николай Григорьевич
RU2417953C2
RU 2016120949 А, 30.11.2017
БЕЗАЛКОГОЛЬНЫЙ НАПИТОК 2001
  • Бобылев С.В.
RU2202257C2
БЕЗАЛКОГОЛЬНЫЙ НАПИТОК (ВАРИАНТЫ) 2009
  • Костин Олег Геннадьевич
RU2422052C2

RU 2 725 736 C1

Авторы

Рыжкова Вера Сергеевна

Батян Анатолий Николаевич

Литвяк Владимир Владимирович

Лобанов Владимир Григорьевич

Лемешевский Виктор Олегович

Кравченко Вячеслав Анатольевич

Росляков Юрий Федорович

Даты

2020-07-03Публикация

2019-06-05Подача