Устройство электроэнергетической системы питания автономного необитаемого подводного аппарата с гибридной энергетической установкой Российский патент 2020 года по МПК B63H23/24 B63G8/08 

Описание патента на изобретение RU2726383C1

Изобретение относится к области судовой электротехники и может быть использовано при создании системы электропитания автономных необитаемых подводных аппаратов (АНПА) тяжелого класса с электродвижителем. Изобретение предназначено для системы питания блоков АНПА, обеспечивающих движение и управление аппаратом.

Автономные необитаемые подводные аппараты тяжелого класса с водоизмещением более 5 тонн могут быть оснащены оборудованием для решения широкого круга задач - океанографических исследований, сейсморазведки, обследования кабельных трасс и трубопроводов, поиска затонувших объектов, охраны акватории. Решение данных задач требует длительного времени автономности: до нескольких месяцев, а уклонение от препятствий и плавание в районах с высокой скоростью течения требует использования пропульсивной установки мощностью до нескольких сотен киловатт. Электроэнергетическая система АНПА данного класса должна иметь большой объем запасенной энергии и обеспечивать одновременно стабильность и качество электропитания высокоточных электронных систем и электродвигателей большой мощности.

Известна судовая электроэнергетическая система для перспективных неатомных подводных лодок с электродвижителем (патент RU №2534470), принимаемая за аналог, содержащая две группы аккумуляторных батарей, каждая из которых разделена в свою очередь на две подгруппы, два дизель-генератора, два электрохимических генератора, автоматические выключатели и распределительные щиты.

Электроэнергетическая система образует два борта электропитания, каждая подгруппа аккумуляторных батарей подключена к силовой сети через сдвоенные автоматические выключатели. Каждый электрохимический генератор обеспечивает электропитание потребителей, заряд группы аккумуляторной батареи своего борта и электропитание всережимной системы электродвижения. Судовая электроэнергетическая система генерирует один вид энергии, электропитание устройств лодки осуществляется от единого источника, когда часть энергии через преобразователи одного вида энергии преобразуется в другой вид потребляемой энергии столько раз, сколько это необходимо.

Недостатком данного решения являются большие массогабаритные размеры аппаратуры электропитания, необходимость участия человека для управления системой и высокий уровень электромагнитных помех по сети питания постоянного тока, создаваемых на частотах вращения электродвигателей и на частотах широтно-импульсной модуляции драйверов управления электродвигателями, что создает помехи работе систем навигации, связи и управления.

Известна гибридная энергетическая установка для аппаратов (патент US №2006071630), принимаемая за прототип, включающая аккумуляторную батарею, топливные элементы, емкость хранения и подачи в топливные элементы водорода, емкость хранения и подачи в топливные элементы кислорода, емкость воды реакции, связанную с топливными элементами, шину питания постоянного тока с подключенным к ней драйвером-преобразователем напряжения постоянного тока в переменный, которое используется для питания электродвигателя пропульсивной установки.

Электропитание от топливного элемента и аккумуляторной батареи через шину питания постоянного тока подается на электродвигатель, при этом для режима движения АНПА на малых скоростях используется электроэнергия, вырабатываемая топливными элементами, для режима движения на больших скоростях используется электроэнергия и от топливных элементов, и от батареи. Топливные элементы и батареи могут содержать более чем один топливный элемент и батарею для подачи электроэнергии более чем одному электродвигателю.

Недостатком технического решения прототипа является высокий уровень электромагнитных помех по сети питания постоянного тока, создаваемых на частотах вращения электродвигателей и на частотах широтно-импульсной модуляции драйверов управления электродвигателями, что создает помехи работе аппаратуры навигации, связи и управления. Также для обеспечения работы АНПА в течение нескольких месяцев для хранения необходимых запасов водорода и кислорода в газообразном состоянии под давлением требуются значительные объемы в АНПА.

Задачей заявляемого изобретения является снижение уровня помех в работе аппаратуры навигации, связи и управления, передаваемой по цепям электропитания и увеличение количества запасенной энергии и, как следствие, увеличение времени автономности АНПА.

Сущность заявляемого изобретения поясняется чертежом, где на фиг. 1 показана схема предлагаемого устройства электроэнергетической системы питания АНПА, которое содержит блок электрохимических генераторов 1 ЭХГ, состоящий не менее, чем из двух электрохимических генераторов 1.1 и 1.2, емкость кислорода 8, емкость водорода 9. Выходы емкости кислорода 8 и емкости водорода 9 подключены к входу электрохимических генераторов 1.1 и 1.2.

В результате процесса горения (окисления) водорода с кислородом на топливных элементах блока электрохимических генераторов 1, образуется вода, которая утилизируется в емкость воды 10 от этой реакции. Также устройство электроэнергетической системы питания АНПА содержит блок аккумуляторных батарей 2 АБ, состоящий не менее, чем из двух аккумуляторных батарей 2.1 и 2.2, шину питания постоянного тока 14, выход которой соединен с драйвером 3 электродвигателя 4, при этом один из отводов шины питания постоянного тока является входом для питания аппаратуры навигации 11, аппаратуры управления 12, аппаратуры связи 13, при необходимости дополнительного погашения уровня помех через блок преобразователя 6 постоянного тока одного значения напряжения в постоянный ток другого значения напряжения с гальванической развязкой и дополнительные буферные аккумуляторы 7.

Для уменьшения уровня индуцированных в сеть постоянного тока электромагнитных помех введена вторая шина питания постоянного тока 15.

Шины питания постоянного тока 14 и 15 включены в дополнительно введенный блок коммутации и управления 5.

Входы блока коммутации и управления 5 соединены с соответствующими выходами электрохимических генераторов 1.1, 1.2 и аккумуляторных батарей 2.1, 2.2.

Снижение уровня электромагнитных помех для режимов экономического хода достигается за счет разделения источников и цепей питания электродвигателя и аппаратуры навигации, связи и управления путем подключения одного электрохимического генератора 1.1 и одной аккумуляторной батарее 2.1 на шину питания драйвера 3 электродвигателя 4, а второй электрохимический генератор 1.2 и аккумуляторная батарея 2.2 через соответствующие входы блока коммутации и управления 5 подключены на шину питания аппаратуры навигации 11, аппаратуры управления 12, аппаратуры связи 13 через блок преобразователя 6 и буферные аккумуляторы 7.

Снижение уровня электромагнитных помех в режимах, когда требуется максимальная скорость движения АНПА, достигается за счет подключения в блоке коммутации и управления 5 обеих аккумуляторных батарей 2.1 и 2.2 к входу шины питания драйвера 3 электродвигателя 4, а электрохимических генераторов 1.1 и 1.2 к входу шины питания аппаратуры навигации 11, аппаратуры управления 12, аппаратуры связи 13.

По завершении режима максимальной скорости электроэнергетическая система переходит в режим экономического хода, зарядки и балансировки литий ионных аккумуляторных батарей.

Для увеличения количества запасов водорода и кислорода в условиях ограниченного объема АНПА емкость водорода 9 размещается внутри емкости кислорода 8, при этом водород и кислород находятся в сжиженном состоянии.

В случае необходимости дополнительного погашения уровня помех, создаваемых работе аппаратуры навигации связи и управления по цепям электропитания на выходе второй шины электропитания может быть включен блок преобразователя 6 постоянного тока одного значения напряжения в постоянный ток другого значения напряжения с гальванической развязкой и дополнительные буферные аккумуляторы 7, обеспечивающие качество электропитания в процессе перекоммутации цепей питания в блоке коммутации и управления 5.

Похожие патенты RU2726383C1

название год авторы номер документа
ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА ПЕРСПЕКТИВНЫХ ДИЗЕЛЬ-ЭЛЕКТРИЧЕСКИХ ПОДВОДНЫХ ЛОДОК С МОНИТОРИНГОМ СОСТОЯНИЯ АККУМУЛЯТОРНЫХ БАТАРЕЙ 2008
  • Ляпидов Константин Станиславович
  • Анисимов Андрей Владимирович
  • Темирев Алексей Петрович
  • Федоров Андрей Евгеньевич
  • Матвиенко Иван Николаевич
  • Савченко Александр Владимирович
  • Горобец Андрей Владимирович
RU2377157C1
МОДУЛЬНАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2018
  • Зайнуллин Ильдар Фанильевич
  • Медведев Александр Андреевич
RU2695633C1
Автономная гибридная энергоустановка 2022
  • Усенко Андрей Александрович
  • Дышлевич Виталий Александрович
  • Бадыгин Ренат Асхатович
  • Штарев Дмитрий Олегович
RU2792410C1
АППАРАТНО-БАТАРЕЙНЫЙ КОМПЛЕКС ПОДВОДНОГО АППАРАТА 2017
  • Бачурин Алексей Андреевич
  • Гаврилин Дмитрий Владимирович
  • Галочкин Алексей Александрович
  • Кудряков Виктор Борисович
  • Сизов Игорь Александрович
  • Тебекина Людмила Борисовна
RU2662802C1
ВЕНТИЛЬНО-ИНДУКТОРНЫЙ ЭЛЕКТРОПРИВОД С ЭКСТРЕМАЛЬНЫМ РЕЖИМОМ РАБОТЫ 2013
  • Темирев Алексей Петрович
  • Цветков Алексей Александрович
  • Киселев Василий Иванович
  • Квятковский Игорь Анатольевич
  • Темирев Алексей Алексеевич
  • Котлов Александр Алексеевич
  • Островский Игорь Павлович
RU2540319C2
Система мониторинга технического состояния подводного добычного комплекса 2021
  • Матвиенко Юрий Викторович
  • Борейко Алексей Анатольевич
  • Ремезков Андрей Владимирович
RU2774662C1
СУДОВАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2012
  • Китаев Александр Михайлович
  • Лазаревский Николай Алексеевич
RU2510358C2
СИСТЕМА ЭЛЕКТРОПИТАНИЯ ТРАНСПОРТНОГО СРЕДСТВА 2012
  • Чаплыгин Алексей Николаевич
  • Чернов Владимир Германович
  • Сапронов Константин Александрович
  • Субботин Владимир Юрьевич
  • Кудрявцев Роман Викторович
  • Михеев Сергей Викторович
  • Тарасов Владимир Владимирович
RU2520180C2
ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА ДЛЯ ПЕРСПЕКТИВНЫХ НЕАТОМНЫХ ПОДВОДНЫХ ЛОДОК 2013
  • Никифоров Борис Владимирович
  • Батрак Дмитрий Викторович
  • Чигарев Андрей Валерьевич
  • Игнатьев Константин Юрьевич
RU2534470C1
СИСТЕМА ПРИВЕДЕНИЯ АВТОНОМНОГО НЕОБИТАЕМОГО ПОДВОДНОГО АППАРАТА К ДОННОМУ ПРИЧАЛЬНОМУ УСТРОЙСТВУ 2020
  • Иванов Александр Владимирович
  • Новиков Александр Владимирович
RU2750550C1

Иллюстрации к изобретению RU 2 726 383 C1

Реферат патента 2020 года Устройство электроэнергетической системы питания автономного необитаемого подводного аппарата с гибридной энергетической установкой

Изобретение относится к области судовой электротехники и может быть использовано при создании системы электропитания автономных необитаемых подводных аппаратов (АНПА). Устройство электроэнергетической системы питания АНПА с гибридной энергетической установкой содержит не менее двух электрохимических генераторов, емкость кислорода и емкость водорода, подключенные к электрохимическим генераторам, емкость воды реакции, по меньшей мере, две аккумуляторные батареи, шину питания постоянного тока, выход которой соединен с драйвером электродвигателя. Один из отводов шины питания является входом для питания аппаратуры навигации, аппаратуры управления и аппаратуры связи. Дополнительно в устройство электрической системы введена вторая шина питания постоянного тока, причем обе шины питания содержат дополнительно введенный блок коммутации и управления. Входы блока коммутации и управления соединены с соответствующими выходами электрохимического генератора и аккумуляторной батареи. Выход второй шины питания постоянного тока является входом питания аппаратуры навигации, аппаратуры управления и аппаратуры связи. Достигается снижение уровня помех в работе аппаратуры навигации, связи и управления, а также увеличивается количество запасенной энергии для увеличения времени автономности АНПА. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 726 383 C1

1. Устройство электроэнергетической системы питания автономного необитаемого подводного аппарата (АНПА) с гибридной энергетической установкой, содержащее не менее двух электрохимических генераторов, емкость кислорода и емкость водорода, подключенные к электрохимическим генераторам, емкость воды реакции, по меньшей мере, две аккумуляторные батареи, шину питания постоянного тока, выход которой соединен с драйвером электродвигателя, при этом один из отводов шины питания является входом для питания аппаратуры навигации, аппаратуры управления, аппаратуры связи, отличающееся тем, что введена вторая шина питания постоянного тока, причем обе шины питания содержат дополнительно введенный блок коммутации и управления, и входы блока коммутации и управления соединены с соответствующими выходами электрохимического генератора и аккумуляторной батареи, при этом выход второй шины питания постоянного тока является входом питания аппаратуры навигации, аппаратуры управления, аппаратуры связи.

2. Устройство по п.1, отличающееся тем, что емкость водорода расположена внутри емкости кислорода.

3. Устройство по п.1, отличающееся тем, что водород и кислород хранятся в сжиженном состоянии.

4. Устройство по п.1, отличающееся тем, что на выходе второй шины питания постоянного тока включен блок преобразователя постоянного тока с гальванической развязкой.

5. Устройство по п.1, отличающееся тем, что к выходу блока преобразователя постоянного тока включен дополнительный аккумулятор.

Документы, цитированные в отчете о поиске Патент 2020 года RU2726383C1

US 2006071630 A1, 06.04.2006
ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА ДЛЯ ПЕРСПЕКТИВНЫХ НЕАТОМНЫХ ПОДВОДНЫХ ЛОДОК 2013
  • Никифоров Борис Владимирович
  • Батрак Дмитрий Викторович
  • Чигарев Андрей Валерьевич
  • Игнатьев Константин Юрьевич
RU2534470C1
US 2002090868 A1, 11.07.2002
CN 103328321 A, 25.09.2013.

RU 2 726 383 C1

Авторы

Гусева Екатерина Анатольевна

Бачурин Алексей Андреевич

Киселев Николай Константинович

Шуланкин Алексей Евгеньевич

Даты

2020-07-13Публикация

2019-10-15Подача