СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ АНТЕННО-МАЧТОВЫХ СООРУЖЕНИЙ Российский патент 2017 года по МПК G01B21/22 

Описание патента на изобретение RU2626069C1

Изобретение относится к области определения состояния несущих конструкций антенно-мачтовых сооружений (АМС), оперативного оповещения об изменении их состояния, предупреждения возникновения чрезвычайных ситуаций, и может быть использовано в автоматизированных системах мониторинга безопасности несущих конструкций в процессе эксплуатации зданий и сооружений.

В настоящее время контроль вертикальности АМС проводится средствами геодезического мониторинга (путем проведения геодезических угловых измерений) в установленном порядке проведения данных работ. [1] (Инструкция по эксплуатации антенных сооружений радиорелейных линий связи/ Министерство связи СССР // ГЛАВСВЯЗЬПРОЕКТ. Государственный Союзный Проектный Институт. Утверждена Министерством связи СССР 14 января 1980 г.), [2] (СТ-011-3 Приложение 4.Требования к проведению геодезического контроля антенных опор / ОАО «Мобильные телесистемы»).

Очевидным недостатком указанного контроля является то, что при заданной периодичности - минимум два раза в год, контроль вертикальности АМС в межповерочный период не проводится.

Известен способ контроля линейных и угловых отклонений от вертикального направления для дистанционного мониторинга антенно-мачтовых сооружений, являющийся наиболее близким по технической сути. [3] (патент РФ на изобретение №2477454).

Способ включает обработку параметров прибора, фиксирующего линейные и угловые отклонения от вертикального положения АМС, в качестве которого используют трехосный акселерометр, закрепленный на АМС. Регистрируют проекции линейного ускорения на три ортогональные оси акселерометра по меньшей мере для двух последовательных сеансов измерения, а линейные и угловые отклонения от вертикального положения антенно-мачтовых сооружений вычисляют по результатам выделения и анализа поступательной составляющей динамических характеристик поступательно-колебательного движения АМС, вычисленных с учетом величин упомянутых проекций линейного ускорения.

Недостатками настоящего способа является отсутствие информации о причинах отклонений и колебаний АМС от вертикального положения, отсутствие данных об уровнях напряженно-деформированного состояния (НДС) металлических конструкций, отсутствие информации о пространственном положении фундамента АМС.

Целью предлагаемого способа контроля состояния антенно-мачтовых сооружений является создание комплексной системы, позволяющей, помимо получения в режиме реального времени данных об отклонениях и колебаний АМС, получать информацию об их причинах, о геометрии и направлении изгиба АМС, пространственном положении фундамента и уровнях НДС металлических конструкций.

Указанная цель достигается за счет применения:

- датчиков НДС, установленных в заданных сечениях на мачте;

- анемометра (измерение направления и скорости ветра);

- сейсмодатчика;

- блоков трехосных акселерометров, установленных через равные расстояния на мачте АМС и в его фундаменте;

- блока сбора, обработки и передачи данных в режиме on-line;

- программного обеспечения, обрабатывающего в режиме реального времени информацию с блоков акселерометров, анемометра, сейсмодатчиков и датчиков НДС о различных параметрах состояния АМС.

Сущность настоящего изобретения состоит в том, что известный способ контроля состояния антенно-мачтовых сооружений, заключающийся в установке на его мачте блока с трехосным акселерометром, согласно изобретению предусматривает дополнительную установку на ней, через равные расстояния, блоков с трехосными акселерометрами, установку анемометра, установку в ее заданных сечениях датчиков напряженно-деформированного состояния, а также предусматривает установку дополнительного блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, что позволит, после обработки полученной информации, в режиме on-line иметь информацию о реальных причинах возможных отклонений мачты от вертикальности, ее геометрии, о пространственном положении фундамента и уровнях напряжений конструктивных элементов мачты.

На фиг. 1 показана схема реализации способа контроля состояния антенно-мачтовых сооружений, где:

1 - мачта АМС;

2 - блок трехосевых акселерометров;

3 - анемометр;

4 - фундамент АМС;

5 - кабель;

6 - блок сбора, обработки и передачи данных;

7 - датчик НДС;

8 - кабель;

9 - сейсмодатчик;

10 - диспетчерский пункт.

Способ контроля осуществляется следующим образом.

На мачту АМС устанавливаются блоки трехосных акселерометров 2 (через равные расстояния), анемометр 3. В фундамент АМС 4 устанавливается один блок трехосных акселерометров 2. Вышеуказанные элементы соединены кабелем 5 и с его помощью подключены к блоку сбора, обработки и передачи данных 6, оборудованного вблизи АМС. По периметру заданных сечений мачты АМС 1 устанавливаются датчики НДС 7, которые соединены кабелем 8 друг с другом и с блоком сбора, обработки и передачи данных 6. В грунте, рядом с фундаментом АМС 4, устанавливается сейсмодатчик 9.

Под действием ветровой нагрузки или сейсмических колебаний грунта мачта АМС 1 отклоняется от вертикали. Блоки трехосевых акселерометров 2 дают информацию об ориентации в пространстве участков мачты АМС 1 в местах их установки. Минимальное количество блоков трехосевых акселерометров 2 не менее трех. Блок трехосевых акселерометров 2, установленный в фундаменте АМС 4, дает информацию о пространственном положении фундамента АМС 4.

Программное обеспечение блока сбора, обработки и передачи данных 6 преобразует в режиме реального времени информацию с блоков трехосевых акселерометров 2 об их положении в пространстве в реальную геометрию мачты АМС 1 и ее фундамента АМС 4 в формате 3-D, возникающую под воздействием ветровой нагрузки или сейсмических колебаний. Сравнивая показания анемометра 3 о направлении и скорости ветра с величиной и направлением изгиба мачты АМС 1, полученных с блоков трехосевых акселерометров 2, оператор диспетчерского пункта 10 может оценить ситуацию, является она штатной или аварийной. Таким же образом оператор оценивает колебания мачты с учетом информации от сейсмодатчика 9.

Для полноты контроля состояния АМС необходимо иметь информацию об уровнях НДС конструкций мачты АМС 1 при ее критических отклонениях от вертикали. Эту информацию обеспечивают установленные по периметру заданных сечений мачты АМС 1 датчики НДС 7.

Указанный способ может быть реализован и на беспроводной технологии.

Таким образом, реализуется универсальный, комплексный способ контроля состояния антенно-мачтовых сооружений, предназначенный для определения как отклонений от вертикальности, так и причин отклонений с информацией об уровнях НДС конструкций в режиме реального времени.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Инструкция по эксплуатации антенных сооружений радиорелейных линий связи/ Министерство связи СССР // ГЛАВСВЯЗЬПРОЕКТ. Государственный Союзный Проектный Институт. Утверждена Министерством связи СССР 14 января 1980 г.

2. СТ-011-3 Приложение 4. Требования к проведению геодезического контроля антенных опор / ОАО «Мобильные телесистемы».

3. Патент РФ на изобретение №2477454.

Похожие патенты RU2626069C1

название год авторы номер документа
Способ контроля антенно-мачтовых сооружений 2019
  • Бурдин Владимир Александрович
  • Нижгородов Антон Олегович
  • Карлов Кирилл Рудольфович
  • Ракитин Сергей Александрович
RU2705934C1
СПОСОБ КОНТРОЛЯ ЛИНЕЙНЫХ И УГЛОВЫХ ОТКЛОНЕНИЙ ОТ ВЕРТИКАЛЬНОГО НАПРАВЛЕНИЯ ДЛЯ ДИСТАНЦИОННОГО МОНИТОРИНГА АНТЕННО-МАЧТОВЫХ СООРУЖЕНИЙ 2011
  • Лысенко Игорь Валентинович
  • Доронин Владимир Олегович
RU2477454C1
ИНТЕРАКТИВНАЯ СИСТЕМА МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА НА УЧАСТКАХ НАДЗЕМНЫХ ПЕРЕХОДОВ 2013
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2556335C1
КОМПЛЕКС МОНИТОРИНГА И РЕГУЛИРОВКИ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ТРУБОПРОВОДОВ ВАНТОВЫХ НАДЗЕМНЫХ ПЕРЕХОДОВ 2017
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Шумский Борис Геннадьевич
  • Бачалов Сергей Владимирович
  • Шатохин Александр Анатольевич
  • Петрук Вячеслав Петрович
  • Масленников Александр Борисович
  • Ившин Владимир Геннадьевич
  • Пушкин Сергей Викторович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2667604C1
КОМПЛЕКС МОНИТОРИНГА ЗА ИЗМЕРЕНИЕМ ГЕОМЕТРИИ И УРОВНЯМИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2019
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Масленников Александр Борисович
  • Колесниченко Сергей Иванович
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2727115C1
ПРОТИВООПОЛЗНЕВОЕ ЗАЩИТНОЕ СООРУЖЕНИЕ 2012
  • Сусликов Сергей Петрович
  • Кобелева Надежда Ивановна
  • Гурьев Вадим Петрович
  • Колтаков Андрей Анатольевич
  • Твардиевич Сергей Вячеславович
  • Пушкин Сергей Викторович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Носач Геннадий Николаевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
  • Кульчицкий Владимир Николаевич
RU2524225C2
СИСТЕМА ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА НА УЧАСТКАХ НАДЗЕМНЫХ ПЕРЕХОДОВ 2013
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
  • Гераськина Татьяна Вадимовна
RU2562602C2
СПОСОБ ДИНАМИЧЕСКОГО ПОЗИЦИОНИРОВАНИЯ ДЛЯ ПРОВЕДЕНИЯ ПОДВОДНЫХ РАБОТ 2016
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Бачалов Сергей Владимирович
  • Твардиевич Сергей Вячеславович
  • Шатохин Александр Анатольевич
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2651932C2
СПОСОБ ПОЗИЦИОНИРОВАНИЯ ПОДВОДНОГО ОБОРУДОВАНИЯ 2017
  • Ткаченко Игорь Григорьевич
  • Шабля Сергей Геннадьевич
  • Твардиевич Сергей Вячеславович
  • Шатохин Александр Анатольевич
  • Белкин Дмитрий Иванович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
RU2659176C1
СПОСОБ ПОЗИЦИОНИРОВАНИЯ ПОДВОДНОГО ОБОРУДОВАНИЯ ОТНОСИТЕЛЬНО СУДНА-НОСИТЕЛЯ 2014
  • Ткаченко Игорь Григорьевич
  • Сусликов Сергей Петрович
  • Гераськин Вадим Георгиевич
  • Кислун Алексей Андреевич
  • Шабров Сергей Николаевич
  • Шабров Пётр Николаевич
  • Кульчицкий Владимир Николаевич
  • Морозов Денис Сергеевич
RU2566564C1

Иллюстрации к изобретению RU 2 626 069 C1

Реферат патента 2017 года СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ АНТЕННО-МАЧТОВЫХ СООРУЖЕНИЙ

Изобретение относится к области определения состояния несущих конструкций антенно-мачтовых сооружений (АМС). Способ контроля состояния антенно-мачтовых сооружений заключается в установке на его мачте блока с трехосным акселерометром, а также предусматривает дополнительную установку на ней, через равные расстояния, блоков с трехосными акселерометрами, установку анемометра, установку в ее заданных сечениях датчиков напряженно-деформированного состояния, а также предусматривает установку дополнительного блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, что позволит, после обработки полученной информации, в режиме on-line иметь информацию о реальных причинах возможных отклонений мачты от вертикальности, ее геометрии, о пространственном положении фундамента и уровнях напряжений конструктивных элементов мачты. Технический результат – получение информации об их причинах, о геометрии и направлении изгиба АМС, пространственном положении фундамента и уровнях напряженно-деформированного состояния (НДС) металлических конструкций. 1 ил.

Формула изобретения RU 2 626 069 C1

Способ контроля состояния антенно-мачтовых сооружений, заключающийся в установке на его мачте блока с трехосным акселерометром, отличающийся тем, что предусматривает дополнительную установку на ней, через равные расстояния, блоков с трехосными акселерометрами, установку анемометра, установку в ее заданных сечениях датчиков напряженно-деформированного состояния, а также предусматривает установку дополнительного блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, что позволит, после обработки полученной информации, в режиме on-line иметь информацию о реальных причинах возможных отклонений мачты от вертикальности, ее геометрии, о пространственном положении фундамента и уровнях напряжений конструктивных элементов мачты.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626069C1

СПОСОБ КОНТРОЛЯ ЛИНЕЙНЫХ И УГЛОВЫХ ОТКЛОНЕНИЙ ОТ ВЕРТИКАЛЬНОГО НАПРАВЛЕНИЯ ДЛЯ ДИСТАНЦИОННОГО МОНИТОРИНГА АНТЕННО-МАЧТОВЫХ СООРУЖЕНИЙ 2011
  • Лысенко Игорь Валентинович
  • Доронин Владимир Олегович
RU2477454C1
СПОСОБ КОНТРОЛЯ ЛОКАЛЬНЫХ ПОВРЕЖДЕНИЙ КОНСТРУКЦИЙ 2009
  • Страхов Алексей Федорович
  • Комаров Михаил Вячеславович
  • Белов Иван Константинович
  • Лазутин Вадим Юрьевич
RU2395800C1
Нажимной валик со срободными втулками для вытяжных приборов ровничных и прядильных машин 1952
  • Крылов Л.Ф.
  • Пиликовский М.Я.
  • Щукин Ф.А.
SU98290A1
НАСОС ДЛЯ ПЕРЕКАЧИВАНИЯ ГАЗОЖИДКОСТНОЙ СМЕСИ 2019
  • Мусинский Артем Николаевич
  • Одинцов Антон Александрович
  • Брюхова Ксения Сергеевна
RU2703774C1
US 20120166136 A1, 28.06.2012.

RU 2 626 069 C1

Авторы

Ткаченко Игорь Григорьевич

Сусликов Сергей Петрович

Гурьев Вадим Петрович

Шатохин Александр Анатольевич

Янко Тимофей Николаевич

Гераськин Вадим Георгиевич

Кислун Алексей Андреевич

Киселёв Юрий Васильевич

Шабров Сергей Николаевич

Шабров Пётр Николаевич

Шмандий Пётр Михайлович

Даты

2017-07-21Публикация

2016-02-17Подача