СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ Российский патент 2020 года по МПК F04D15/00 F17D1/08 

Описание патента на изобретение RU2727511C1

Изобретение относится к области нефтяной промышленности и может быть использовано при прогнозировании работы магистральных нефтепроводов, работающих не на проектных мощностях.

На существующем уровне развития техники известны способы разработки методов энергоэффективной эксплуатации магистральных нефтепроводов с оптимизацией технологических режимов: автореф. дис. канд. тех. наук: 25.00.19/ Бархатов Александр Федорович. - Москва, 2017. – С. 160 с., в которых энергоэффективность достигается:

- оптимизацией технологических режимов перекачки нефти и нефтепродуктов;

- повышением КПД МНА;

- совместным использованием противотурбулентных и депрессорных присадок.

Недостатками подходов оптимизации этими способами являются: не всегда рациональное использование энергоемкого оборудования МНА, отсутствие обобщенного показателя эффективности эксплуатации магистрального нефтепровода, который показывает эффективность использования насосного оборудования нефтеперекачивающих станций.

Наиболее близким к заявляемому способу оценки эффективности эксплуатации насосного оборудования является метод мониторинга энергоэффективности работы технологического участка магистрального нефтепровода по критерию оценки величины КПД участка (Ревель-Муроз, П.А. Разработка методов повышения энергоэффективности нефтепроводного транспорта с внедрением комплекса энергосберегающих технологий: автореф. дис. канд. тех. наук: 25.00.19/ Ревель-Муроз Павел Александрович. - Уфа, 2018. – С. 47-85 с.).

Алгоритм предусматривает расчет фактических и максимально возможных КПД каждого технологического участка магистрального нефтепровода и КПД магистральных насосных агрегатов, входящих в данные участки, с дальнейшим сравнением фактического КПД технологического участка с плановыми показателями КПД технологического участка, заданными на текущий год реализации. Технологический участок магистрального нефтепровода при достижении фактического показателя КПД технологического участка целевому показателю считается энергоэффективным.

Недостатком данного способа являются: отсутствие обобщенного показателя оценки эффективности эксплуатации установленного насосного оборудования в целом на текущий момент и для планируемого периода поставки, что усложняет планирование и контроль перекачки и может приводить к нерациональным действиям при отклонении объемов поставки от плановых.

Указанные выше недостатки преодолеваются введением в алгоритмы оптимизации работы технологического участка обобщенного показателя оценки эффективности эксплуатации установленного насосного оборудования.

Обобщенный показатель эффективности использования насосного оборудования связан с эффективностью работы магистрального нефтепровода в целом и рассчитывается для разного уровня загрузки нефтепровода по формуле (1).

, (1)

где Σ Nнi - суммарная гидравлическая мощность, необходимая для перекачки требуемого объема нефти по технологическому участку нефтепровода, кВт;

Σ Ni - суммарная электрическая мощность, потребляемая всеми работающими магистральными насосами на технологическом участке при работе режимом, обеспечивающим требуемую производительность перекачки, кВт.

На фиг. 1 показаны линии гидроуклона реализуемых режимов для разных производительностей.

На фиг. 2 показаны зависимость коэффициента эффективности использования насосного оборудования при различных требуемых производительностях для конкретного технологического участка трубопровода.

Способ повышения эффективности эксплуатации магистральных нефтепроводов заключается в следующем.

Для определения рационального использования существующего насосного оборудования перекачивающих станций, при изменении производительности конкретного магистрального нефтепровода выполняются следующие действия.

На начальном этапе выбирают конкретный существующий трубопровод, определяют какую жидкость с какими свойствами, в каком количестве и за какое время необходимо прокачать.

Далее включением различных комбинаций магистральных насосов, соединенных последовательно или параллельно на головной и промежуточных насосных станциях и регулированием трубопроводной системы с помощью подключения лупингов, введения противотурбулентных присадок или использованием регуляторов давления на станциях получают рабочую точку, соответствующую требуемой производительности (точка пересечения расходно-напорной характеристики трубопровода и суммарной расходно-напорной характеристики работающих насосов). Подбор количества насосов производят в зависимости от уровня загрузки трубопровода в каждом конкретном случае, для чего на каждой станции определяют последовательным включением количество насосов, необходимых для осуществления требуемой производительности транспортировки нефти или нефтепродукта.

Безопасность и работоспособность получаемого таким образом режима проверяют с помощью построения линии гидроуклона [Коршак А.А., Нечваль А.М. Проектирование и эксплуатация газонефтепроводов. СПб.: Недра, 2008. – 73-107 с.]. Линия гидроуклона должна оказаться в разрешенном коридоре между линией сжатого профиля трубопровода и линией напора, характеризующей несущую способность трубы. Если линия гидроуклона выходит за границы коридора, такой режим бракуется. Для дальнейшего рассмотрения оставляют только режимы с комбинациями включенных насосов и особенностями настройки трубопровода, линии гидроуклона которых вписываются в разрешенный коридор. Таких реализуемых режимов может быть достаточно много. На фиг. 1. показан пример реализации проверки с помощью построения линий гидроуклона реализуемых режимов для разных производительностей.

Следующим этапом для каждого из реализуемых режимов рассчитывают обобщенный показатель эффективности использования насосного оборудования. Затем выбирают режим с наибольшим значением показателя и, уже на его основе строятся планы перекачки. Чем больше значения обобщённого показателя эффективности использования насосного оборудования, тем наиболее эффективно подобраны комбинации включения насосного оборудования.

В силу дискретности включения насосного оборудования не всегда удается подобрать технологический режим под требуемую производительность перекачки. В этом случае выбирают один из лучших режимов, обеспечивающих ближайшую большую производительность и один из лучших режимов ближайшей меньшей производительности. Используя их комбинацию, осуществляют подбор промежутков времени, обеспечивающих необходимый объем поставки нефти или нефтепродукта. Для данного случая обобщённый показатель эффективности использования насосного оборудования определяется по формуле

. (2)

где τ – время работы соответствующим режимом;

Nнiмaкс, Nнiмин - суммарная гидравлическая мощность, необходимая для перекачки требуемого объема нефти по технологическому участку нефтепровода, максимальная и минимальная соответственно, кВт;

Niмах, Niмин, - суммарная электрическая мощность, потребляемая всеми работающими магистральными насосами на технологическом участке при работе режимом, обеспечивающим требуемую производительность перекачки, максимальная и минимальная соответственно, кВт.

При изменении производительности поставки комбинации требуемых включений насосов предыдущие операции следует повторить.

Все возможные физически реализуемые производительности перекачки на технологическом участке магистрального трубопровода с использованием установленного оборудования определяют график зависимости максимальных коэффициентов эффективности использования магистрального насосного оборудования от производительности перекачки.

График обобщенного показателя эффективности использования насосного оборудования показывает, на какую максимальную эффективность преобразования энергии в насосном оборудовании можно рассчитывать при планировании перекачки. С помощью этого показателя можно определить, какие дополнительные затраты или экономия электроэнергии возникнут при изменении краткосрочных или долгосрочных планов поставки нефти, какие технологические режимы являются наиболее эффективными, существует ли необходимость менять или регулировать установленное оборудование, эффективно ли будет применение присадок и разбавителей. График обобщенного показателя эффективности использования насосного оборудования строится для каждого технологического участка, определяет его особенности, позволяет наиболее рациональным способом использовать магистральное насосное оборудование при разных производительностях перекачки нефти, сравнивать по эффективности преобразования энергии технологические участки между собой, прогнозировать работу магистральных нефтепроводов при различных уровнях загрузки, определять целесообразность мероприятий по совершенствованию технологий перекачки. Пример графика обобщенного показателя эффективности использования насосного оборудования представлен на фиг. 2.

Предложенный способ повышения эффективности эксплуатации магистральных нефтепроводов позволяет обосновать необходимость:

- специальных технологий для изменения работы насосного оборудования;

- замены насосного оборудования, что является дорогостоящим мероприятием;

- спрогнозировать работу магистральных нефтепроводов при различных уровнях загрузки.

- выбрать наиболее экономичный и безопасный способ эксплуатации оборудования.

Рассмотрим конкретный пример реализации предложенного способа. Например, «Нефтепровод 1» был рассчитан на производительность 47 млн.т/год, необходимо осуществить поставку нефти 42 млн. т/год. Для того чтобы рассчитать на сколько изменится эффективность использования насосного оборудования, необходимо произвести подбор параметров совмещенной характеристики нефтепровода для нового уровня загрузки и определить количество насосов, необходимых для осуществления транспортировки.

Результаты подбора комбинаций включения насосов представлены в Таблице 1.

Наглядность правильности подбора количества и места подключения насосов на станциях представлены на Фиг. 1.

Результаты обобщенного показателя эффективности использования насосного оборудования представлены в Фиг. 2., из которой видно, что при изменении производительности нефтепровода с 47 млн.т/год до 42 млн. т/год эффективность использования насосного оборудования увеличится на 20 %.

Таким образом, за счет оптимизации работы технологического участка трубопровода, а именно за счет наиболее выгодного уровня загрузки при подборе комбинаций включения насосов на станциях можно повысить эффективность эксплуатации магистральных нефтепроводов и спрогнозировать работу магистральных нефтепроводов при различных уровнях загрузки, тем самым заявляемое техническое решение позволяет повысить эффективность использования магистрального насосного оборудования в несколько раз, что наглядно показал конкретный пример реализации способа.

Похожие патенты RU2727511C1

название год авторы номер документа
АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ НЕПРЕРЫВНОГО ИЗМЕРЕНИЯ И АНАЛИЗА В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ КОЭФФИЦИЕНТА ПОЛЕЗНОГО ДЕЙСТВИЯ НАСОСОВ В НАСОСНО-ТРУБОПРОВОДНОМ КОМПЛЕКСЕ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДА 2005
  • Кричке Владимир Оскарович
  • Тихонов Игорь Васильевич
  • Волков Юрий Вениаминович
  • Акбердин Альберт Мидхатович
  • Вишневская Татьяна Никодимовна
  • Кричке Виктор Владимирович
  • Громан Александр Оттович
RU2320007C2
СПОСОБ НЕПРЕРЫВНОГО ИЗМЕРЕНИЯ И АНАЛИЗА В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ КОЭФФИЦИЕНТА ПОЛЕЗНОГО ДЕЙСТВИЯ НАСОСОВ В НАСОСНО-ТРУБОПРОВОДНОМ КОМПЛЕКСЕ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДА 2003
  • Кричке Владимир Оскарович
  • Кричке Виктор Владимирович
  • Громан Александр Оттович
RU2277186C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ И МЕСТА УТЕЧКИ В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ МЕЖДУ ДВУМЯ СМЕЖНЫМИ НАСОСНЫМИ СТАНЦИЯМИ НАСОСНО-ТРУБОПРОВОДНОГО КОМПЛЕКСА ПО ПЕРЕКАЧКЕ НЕФТИ И НЕФТЕПРОДУКТОВ 2007
  • Кричке Владимир Оскарович
  • Кричке Виктор Владимирович
  • Громан Александр Оттович
RU2362134C1
ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА ПРОТИВОАВАРИЙНОЙ АВТОМАТИКИ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ И НЕФТЕПРОДУКТОПРОВОДОВ 2015
  • Ревель-Муроз Павел Александрович
  • Кузьмин Анатолий Валерьевич
  • Настепанин Павел Евгеньевич
  • Лукьяненко Максим Сергеевич
  • Дрожжинов Сергей Феликсович
  • Евтух Константин Александрович
  • Кучерявый Владимир Владимирович
  • Чужинов Евгений Сергеевич
  • Морозов Роман Борисович
RU2588330C1
СИСТЕМА ХРАНЕНИЯ НЕФТИ 2003
  • Норко И.Е.
  • Поединчук Н.Е.
  • Марченко С.И.
  • Сластнов А.Е.
RU2215676C1
Комбинированный способ очистки внутренней поверхности технологических трубопроводов нефтеперекачивающих станций при подготовке к перекачке светлых нефтепродуктов 2017
  • Ревель-Муроз Павел Александрович
  • Лисин Юрий Викторович
  • Фридлянд Яков Михайлович
  • Казанцев Максим Николаевич
  • Замалаев Сергей Николаевич
  • Новиков Андрей Алексеевич
  • Хованов Георгий Петрович
  • Кузмин Роман Евгеньевич
RU2699618C2
Способ очистки внутренней поверхности технологических трубопроводов нефтеперекачивающих станций при подготовке к перекачке светлых нефтепродуктов 2016
  • Ревель-Муроз Павел Александрович
  • Лисин Юрий Викторович
  • Фридлянд Яков Михайлович
  • Казанцев Максим Николаевич
  • Замалаев Сергей Николаевич
  • Тимофеев Федор Владимирович
  • Кузнецов Андрей Александрович
  • Хованов Георгий Петрович
  • Новиков Андрей Алексеевич
  • Богатенков Юрий Васильевич
  • Радов Владимир Маркович
  • Нуреев Марат Фанзурович
RU2637328C1
СПОСОБ УПРАВЛЕНИЯ МНОГОМАШИННЫМ КОМПЛЕКСОМ СИСТЕМЫ ПОДДЕРЖАНИЯ ПЛАСТОВОГО ДАВЛЕНИЯ 2012
  • Велиев Мустафа Кярамович
  • Сушков Валерий Валентинович
RU2493361C1
НЕФТЕПЕРЕКАЧИВАЮЩАЯ СТАНЦИЯ БЕСПЕРЕБОЙНОЙ РАБОТЫ 2015
  • Беккер Леонид Маркович
  • Назаренко Александр Владимирович
RU2597274C1
Способ транспортирования высокопарафинистой нефти и/или нефтепродуктов по трубопроводам 2018
  • Ревель-Муроз Павел Александрович
  • Несын Георгий Викторович
  • Зверев Федор Сергеевич
  • Жолобов Владимир Васильевич
  • Хасбиуллин Ильназ Ильфарович
RU2686144C1

Иллюстрации к изобретению RU 2 727 511 C1

Реферат патента 2020 года СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

Изобретение относится к области нефтяной промышленности и может быть использовано при прогнозировании работы магистральных нефтепроводов, работающих не на проектных мощностях. Предложен способ повышения эффективности эксплуатации магистральных нефтепроводов с использованием существующего насосного оборудования перекачивающих станций, заключающийся в том, что на первом этапе выбирают конкретный существующий трубопровод, определяют параметры прокачиваемой жидкости. Далее, используя различные комбинации магистральных насосов, и регулированием трубопроводной системы получают рабочую точку пересечения расходно-напорной характеристики трубопровода и суммарной расходно-напорной характеристики работающих насосов. После чего осуществляют проверку правильности подбора комбинаций включения насосов путем построения линии гидроуклона. С помощью полученных данных рассчитывают обобщенный показатель оценки эффективности эксплуатации установленного насосного оборудования. Технический результат - оптимизация работы технологического участка трубопровода за счет введения обобщенного показателя оценки эффективности эксплуатации установленного насосного оборудования. 2 ил., 1 табл.

Формула изобретения RU 2 727 511 C1

Способ повышения эффективности эксплуатации магистральных нефтепроводов с использованием существующего насосного оборудования перекачивающих станций заключается в том, что на первом этапе выбирают конкретный существующий трубопровод, определяют, какую жидкость, с какими свойствами, в каком количестве и за какое время необходимо прокачать, далее, используя различные комбинации магистральных насосов, соединенных последовательно или параллельно на головной и промежуточных насосных станциях, и регулированием трубопроводной системы с помощью подключения лупингов и введения противотурбулентных присадок или с использованием регуляторов давления на станциях находят рабочую точку пересечения расходно-напорной характеристики трубопровода и суммарной расходно-напорной характеристики работающих насосов, следующим этапом осуществляют проверку правильности подбора комбинаций путем построения линии гидроуклона, после чего рассчитывают обобщенный показатель эффективности эксплуатации магистрального нефтепровода для разного уровня загрузки по формуле:

,

где Σ Nнi - суммарная гидравлическая мощность, необходимая для перекачки требуемого объема нефти по технологическому участку нефтепровода, кВт;

Σ Ni - суммарная электрическая мощность, потребляемая всеми работающими магистральными насосами на технологическом участке при работе режимом, обеспечивающим требуемую производительность перекачки, кВт.

Документы, цитированные в отчете о поиске Патент 2020 года RU2727511C1

СПОСОБ УВЕЛИЧЕНИЯ ПРОПУСКНОЙ СПОСОБНОСТИ ТРУБОПРОВОДА (ВАРИАНТЫ) 2015
  • Лисин Юрий Викторович
  • Ревель-Муроз Павел Александрович
  • Суриков Виталий Иванович
  • Замалаев Сергей Николаевич
  • Воронов Александр Геннадиевич
  • Тюрин Игорь Григорьевич
  • Бахтизин Рамиль Назифович
  • Мастобаев Борис Николаевич
RU2643570C2
АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ НЕПРЕРЫВНОГО КОНТРОЛЯ ЗА РАБОТОЙ НАСОСНО-ТРУБОПРОВОДНОГО КОМПЛЕКСА ДЛЯ ПЕРЕКАЧКИ ВОДЫ И НЕФТЕПРОДУКТОВ 1997
  • Кричке В.О.
  • Громан А.О.
  • Кричке В.В.
RU2165642C2
СПОСОБ НЕПРЕРЫВНОГО ИЗМЕРЕНИЯ И АНАЛИЗА В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ КОЭФФИЦИЕНТА ПОЛЕЗНОГО ДЕЙСТВИЯ НАСОСОВ В НАСОСНО-ТРУБОПРОВОДНОМ КОМПЛЕКСЕ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДА 2003
  • Кричке Владимир Оскарович
  • Кричке Виктор Владимирович
  • Громан Александр Оттович
RU2277186C2
WO 2013013974 A2, 31.01.2013
AU 2010201500 B2, 04.04.2013.

RU 2 727 511 C1

Авторы

Кононова Маргарита Ивановна

Мызников Михаил Олегович

Шалай Виктор Владимирович

Иванов Руслан Николаевич

Даты

2020-07-22Публикация

2020-01-28Подача