Передняя опора ротора компрессора Российский патент 2020 года по МПК F01D25/16 F02C7/06 F04D29/56 

Описание патента на изобретение RU2729579C1

Изобретение относится к авиационному двигателестроению, а именно к узлам опор роторов газотурбинных двигателей.

Известна передняя опора ротора компрессора низкого давления авиационного двухконтурного турбореактивного двигателя АИ-25 (А.С. Виноградов, «Конструкция ТРДД АИ-25», СГАУ, г. Самара, 2013 г.) с шариковым радиально-упорным подшипником. Корпус передней опоры состоит из корпуса подшипника и тонкостенной конической диафрагмы с фланцем, который крепится к разделительному корпусу двигателя шпильками. Наружная обойма подшипника и втулка контактного уплотнения установлены в корпус подшипника и затянуты гайкой. Внутренняя обойма подшипника и роторные детали радиально-торцевого контактного графитового масляного уплотнения стянуты гайкой на валу ротора.

Недостаток известного устройства состоит в том, что в условиях работы двигателя летательного аппарата уровень изгибной жесткости тонкостенной конической диафрагмы корпуса передней опоры ротора компрессора недостаточен и радиальные зазоры между лопатками ротора и статора должны быть увеличены выше диапазона оптимальных значений, обеспечивающих высокий уровень газодинамической эффективности компрессора.

Общеизвестные методы повышения изгибной жесткости конических диафрагм корпусов опор: увеличение толщины, оребрение мест сопряжения конической диафрагмы с фланцем и т.п. малоэффективны из-за существенного роста массы конструкции.

Задачей изобретения является повышение газодинамической эффективности компрессора за счет обеспечения стабильных оптимальных значений радиальных зазоров между лопатками ротора и статора компрессора путем увеличения изгибной жесткости конической диафрагмы корпуса передней опоры ротора компрессора двигателя.

Указанная задача решается тем, что в передней опоре ротора компрессора, включающей радиально-упорный шариковый подшипник, установленный своей наружной обоймой в корпус подшипника корпуса передней опоры с тонкостенной конической диафрагмой и фланцем, закрепленным к промежуточному корпусу двигателя, корпус передней опоры снабжен соосной ему стяжной втулкой в виде тонкостенной конической диафрагмы, закрепленной к корпусу подшипника и к промежуточному корпусу двигателя с обеспечением сжимающего усилия в тонкостенной конической диафрагме корпуса передней опоры.

На фиг. 1 показан продольный разрез передней опоры ротора компрессора, на фиг. 2 - место соединения корпуса передней опоры и стяжной втулки.

Радиально-упорный шариковый подшипник 1 передней опоры компрессора своей наружной обоймой 2 установлен в корпус подшипника 3 корпуса передней опоры 4. Корпус передней опоры 4 состоит из корпуса подшипника 3, тонкостенной конической диафрагмы 5 и фланца 6. Корпус передней опоры 4 с помощью фланца 6 крепится к промежуточному корпусу двигателя 7. Стяжная втулка 8 выполнена в виде тонкостенной конической диафрагмы 9 с фланцами 10 и 11, с помощью которых осуществляется ее крепление винтами 12 в стыке 13 к корпусу подшипника 3 корпуса передней опоры 4 и к промежуточному корпусу двигателя 7.

Сборку передней опоры ротора компрессора начинают с монтажа фланца 6 корпуса передней опоры 4 на промежуточный корпус двигателя 7. Затем устанавливают стяжную втулку 8 фланцем 11 на промежуточный корпус двигателя 7, при этом до затяжки винтов 12 в стыке 13 сопрягаемых плоскостей корпуса подшипника передней опоры 3 и фланца 10 должен быть обеспечен монтажный зазор. После затяжки винтов 12 с выборкой зазора и обеспечением плотности стыка 13 на тонкостенную коническую диафрагму 5 корпуса передней опоры 4 действует усилие предварительного сжатия. Таким образом, в конической диафрагме 5 корпуса передней опоры 4 формируются предварительные напряжения сжатия, а в тонкостенной конической диафрагме 9, соответственно, предварительные напряжения растяжения. После контроля соосности опор двигателя в корпус подшипника 3 монтируют радиально-упорный шариковый подшипник 1 с наружной обоймой 2.

Выбор величины монтажного зазора в стыке 13 и, соответственно, усилий предварительного сжатия и растяжения осуществляют по следующим критериям:

1. Предварительные напряжения сжатия σпр.сж в тонкостенной конической диафрагме 5 корпуса передней опоры 4 должны превышать максимальные действующие рабочие напряжения растяжения σр, т.е. σпр.сжр;

2. Суммарные напряжения сжатия σсж.∑ в тонкостенной конической диафрагме 5 корпуса передней опоры 4, равные сумме величин напряжений предварительного сжатия σпр.сж и максимальных действующих рабочих напряжений сжатия σсж., не должны превышать величину напряжений σпц предела пропорциональности для материала тонкостенной конической диафрагмы 5, т.е. σсж.∑пр.сжсжпц и относительные деформации ее материала должны находиться в упругой области.

3. Величина напряжений в тонкостенной конической диафрагме 9 не должна превышать величину напряжений σпц предела пропорциональности для ее материала и относительные деформации должны находиться в упругой области.

Повышение изгибной жесткости при приложении сжимающего осевого усилия N для упрощения показано на примере консольной тонкостенной цилиндрической диафрагмы длиной L с диаметром D и толщиной стенки δ, нагруженной изгибающим моментом M или радиальным усилием Р, M=Р×L.

Геометрические характеристики ее плоского сечения перпендикулярного оси:

F - площадь, F=π×D×δ;

Jo - момент инерции относительно центра сечения,

Jo=π×D3×δ/8;

Bo - изгибная жесткость при чистом изгибе - нагружение только изгибающим моментом M, Bo=Е×Jo, где Е - модуль упругости. При изгибе консольной тонкостенной цилиндрической диафрагмы предварительно нагруженной сжимающим осевым усилием N происходит смещение нейтральной линии сечения от его центра (Рудицын М.Н., Артемов П.Я., «Справочное пособие по сопротивлению материалов», г. Минск. 1961 г.) на величину а, а=Jo×N/F/M;

Ja - момент инерции сечения с учетом смещения нейтральной линии,

Ja=Jo+а2×F.

Ва - изгибная жесткость с учетом смещения нейтральной линии,

Ва=Е×Ja=Е×(Jo2×F)=Во×(1+Jo×N2/F/M2) или

Ва=K×Во, где K=1+Jo×N2/F/M2;

Таким образом, значение коэффициента К больше единицы (К>1) свидетельствует о том, что предварительное нагружение сжимающим осевым усилием N консольной тонкостенной цилиндрической диафрагмы ведет к повышению ее изгибной жесткости.

Аналогичные зависимости характеризуют повышение изгибной жесткости консольной конической тонкостенной диафрагмы в предварительно напряженном состоянии под действием сжимающего осевого усилия.

При работе двигателя радиальное и осевое усилия от ротора компрессора (не показан) через наружную обойму 2 радиально-упорного шарикового подшипника 1 передаются на корпус подшипника 3. Результирующее усилие с корпуса подшипника 3 передается на корпус передней опоры 4 и далее на промежуточный корпус двигателя 7 по тонкостенной конической диафрагме 5 через фланец 6, а так же через стык 13, стянутый винтами 12, по фланцу 10, тонкостенной конической диафрагме 9 и фланцу 11 стяжной втулки 8.

Таким образом, увеличение изгибной жесткости конической диафрагмы корпуса передней опоры ротора компрессора за счет ее предварительного нагружения сжимающим усилием для обеспечения стабильных оптимальных радиальных зазоров между лопатками ротора и статора компрессора, обеспечивает высокий уровень газодинамической эффективности компрессора.

Похожие патенты RU2729579C1

название год авторы номер документа
Компрессор низкого давления газотурбинного двигателя авиационного типа (варианты) 2016
  • Марчуков Евгений Ювенальевич
  • Илясов Сергей Анатольевич
  • Куприк Виктор Викторович
  • Коновалова Тамара Петровна
  • Поляков Константин Сергеевич
  • Савченко Александр Гаврилович
  • Скарякина Регина Юрьевна
  • Селиванов Николай Павлович
RU2614708C1
Компрессор низкого давления газотурбинного двигателя авиационного типа (варианты) 2016
  • Марчуков Евгений Ювенальевич
  • Еричев Дмитрий Юрьевич
  • Илясов Сергей Анатольевич
  • Куприк Виктор Викторович
  • Савченко Александр Гаврилович
  • Шишкова Ольга Владимировна
  • Селиванов Николай Павлович
RU2614709C1
Способ изготовления вала ротора компрессора низкого давления газотурбинного двигателя и вал ротора компрессора низкого давления, изготовленный этим способом (варианты) 2016
  • Марчуков Евгений Ювенальевич
  • Еричев Дмитрий Юрьевич
  • Коновалова Тамара Петровна
  • Новожилов Юрий Николаевич
  • Поляков Константин Сергеевич
  • Тарвердян Феликс Леникович
  • Шишкова Ольга Владимировна
  • Кузнецов Игорь Сергеевич
RU2615304C1
Способ изготовления вала ротора компрессора низкого давления газотурбинного двигателя и вал ротора компрессора низкого давления, изготовленный этим способом (варианты) 2016
  • Марчуков Евгений Ювенальевич
  • Еричев Дмитрий Юрьевич
  • Куприк Виктор Викторович
  • Коновалова Тамара Петровна
  • Новожилов Юрий Николаевич
  • Скарякина Регина Юрьевна
  • Тарвердян Феликс Леникович
  • Шишкова Ольга Владимировна
RU2616138C1
Способ изготовления вала ротора компрессора низкого давления газотурбинного двигателя и вал ротора компрессора низкого давления, изготовленный этим способом 2016
  • Марчуков Евгений Ювенальевич
  • Еричев Дмитрий Юрьевич
  • Коновалова Тамара Петровна
  • Новожилов Юрий Николаевич
  • Скарякина Регина Юрьевна
  • Тарвердян Феликс Леникович
  • Шишкова Ольга Владимировна
  • Селиванов Николай Павлович
RU2616139C1
Способ изготовления вала ротора компрессора низкого давления газотурбинного двигателя и вал ротора компрессора низкого давления, изготовленный этим способом (варианты) 2016
  • Марчуков Евгений Ювенальевич
  • Еричев Дмитрий Юрьевич
  • Куприк Виктор Викторович
  • Новожилов Юрий Николаевич
  • Поляков Константин Сергеевич
  • Тарвердян Феликс Леникович
  • Селиванов Николай Павлович
RU2614719C1
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2019
  • Скиба Владимир Васильевич
RU2730565C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВАЛА РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ), ВАЛ РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) 2014
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Марчуков Евгений Ювенальевич
  • Симонов Сергей Анатольевич
  • Кузнецов Игорь Сергеевич
RU2573413C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВАЛА РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ), ВАЛ РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) 2014
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Марчуков Евгений Ювенальевич
  • Симонов Сергей Анатольевич
  • Кузнецов Игорь Сергеевич
RU2573416C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2001
  • Решетников Ю.Е.
  • Сулимов Д.Д.
  • Кузнецов В.А.
RU2204043C2

Иллюстрации к изобретению RU 2 729 579 C1

Реферат патента 2020 года Передняя опора ротора компрессора

Изобретение относится к авиационному двигателестроению, а именно к узлам опор роторов газотурбинных двигателей. Задача по повышению газодинамической эффективности компрессора за счет обеспечения стабильных оптимальных значений радиальных зазоров между лопатками ротора и статора компрессора решается тем, что в передней опоре ротора компрессора, включающей радиально-упорный шариковый подшипник 1, установленный своей наружной обоймой 2 в корпус подшипника 3 корпуса передней опоры 4 с тонкостенной конической диафрагмой 5 и фланцем 6, закрепленным к промежуточному корпусу двигателя 7, корпус передней опоры 4 снабжен соосной ему стяжной втулкой в виде тонкостенной конической диафрагмы 8, закрепленной к корпусу подшипника 3 и к промежуточному корпусу двигателя 7 с обеспечением сжимающего усилия в тонкостенной конической диафрагме 5 корпуса передней опоры. Таким образом, увеличение изгибной жесткости конической диафрагмы корпуса передней опоры ротора компрессора за счет ее предварительного нагружения сжимающим усилием для обеспечения стабильных оптимальных радиальных зазоров между лопатками ротора и статора компрессора обеспечивает высокий уровень газодинамической эффективности компрессора. 2 ил.

Формула изобретения RU 2 729 579 C1

Передняя опора ротора компрессора, включающая радиально-упорный шариковый подшипник, установленный своей наружной обоймой в корпус подшипника корпуса передней опоры с тонкостенной конической диафрагмой и фланцем, закрепленным к промежуточному корпусу двигателя, отличающаяся тем, что корпус передней опоры снабжен соосной ему стяжной втулкой в виде тонкостенной конической диафрагмы, закрепленной к корпусу подшипника и к промежуточному корпусу двигателя с обеспечением сжимающего усилия в тонкостенной конической диафрагме корпуса передней опоры.

Документы, цитированные в отчете о поиске Патент 2020 года RU2729579C1

US 6447248 B1, 10.09.2002
US 2016017752 A1, 21.01.2016
FR 2888621 A1, 19.01.2007
РАЗРЫВНОЙ РАЗЪЕДИНИТЕЛЬ 2003
  • Буши Гаэль
  • Вассер Паскаль
RU2328627C2
Опора вала ротора компрессора низкого давления турбореактивного двигателя (варианты), цилиндрическая составляющая вала ротора, внешний стяжной элемент вала ротора 2016
  • Марчуков Евгений Ювенальевич
  • Еричев Дмитрий Юрьевич
  • Зенкова Лариса Федоровна
  • Илясов Сергей Анатольевич
  • Кулагин Владимир Николаевич
  • Сахибгареев Альфред Галеевич
  • Тарвердян Феликс Леникович
  • Шишкова Ольга Владимировна
  • Селиванов Николай Павлович
RU2614018C1

RU 2 729 579 C1

Авторы

Скиба Владимир Васильевич

Воронков Алексей Петрович

Гумеров Александр Витальевич

Болдырев Олег Игоревич

Шкуренков Александр Васильевич

Кузьмин Сергей Валерьевич

Даты

2020-08-11Публикация

2019-04-24Подача