Область, к которой относится изобретение. Изобретение относится к способам триботехнических исследований уплотнительных материалов для подвижных соединений под давлением жидкой среды.
Уровень техники
Известно техническое решение (1. Власьевский С.В., Роженцев А.В. Методика триботехнического исследования механических узлов подвижного состава в условиях низких температур // Методическое пособие. Хабаровск. Издательство ДВГУПС, 2007) в котором испытание на износостойкость резин осуществляют путем трения без смазки при постоянной нагрузке и скорости о металлическую поверхность. Недостатком указанного технического решения является проведения исследований в режиме сухого трения, который не характерен при эксплуатации уплотнительных материалов, предназначенных для уплотнения жидкой среды.
Наиболее близким техническим решением является (2. Соколова М.Д., Шадринов Н.В. Разработка стендовых испытаний резиновых изделий уплотнительного назначения на машине трения ИИ 5018 // Труды IV Евразийского симпозиума по проблемам прочности материалов и машин для регионов холодного климата «EURASTRENCOLD-2008», - Якутск: изд-во СО РАН, 2008), где предложен способ испытания уплотнительных материалов на износ в различных жидких средах. Испытания осуществляют на модифицированной машине трения ИИ-5018 при постоянной нагрузке и скорости вращения смазываемого диска. Недостатком указанного технического решения является невозможность выявления пригодности материала для подвижного уплотнения под тем или иным давлением уплотняемой жидкой среды.
Раскрытие изобретения.
Задачей заявляемого.изобретения является разработка простого способа для триботехнических испытаний уплотнительных материалов в режимах жидкостного и полусухого трения под давлением уплотняемой жидкой среды.
Технический результат, получаемый при реализации изобретения, заключается в упрощении способа триботехнических исследований уплотнительных материалов.
Существенные признаки, характеризирующие изобретение.
Ограничительные: Испытание осуществляется путем трения исследуемого уплотнительного материала о поверхность смазываемого металлического тела.
Отличительные: Трение происходит между уплотнением, размещенным в кольцеобразном углублении на плоскости и противоположной плоскостью под давлением жидкой среды без использования уплотняемого вращающегося вала.
Краткое описание чертежей
На фиг. 1 приведено схематическое изображение испытания уплотнений при вращении самого уплотнителя и при неподвижной плоскости;
На фиг. 2 схематическое изображение испытания уплотнений при неподвижном уплотнителе;
На фиг. 3 схематическое изображение испытания уплотнений для определения релаксации материала уплотнения в зависимости от угла наклона.
Осуществление изобретения
Способ триботехнических испытаний уплотнений осуществляется следующим образом: В патрон сверлильного станка 1 с помощью стержня 2, закрепляется диск 3, а на столе сверлильного станка закрепляется пластина 4 таким образом, чтобы центр вращения диска 3 и центр пластины 4 совпадали, а плоскости обращенные друг к другу были параллельными. Затем, диск 3 опускается на пластину 4 и с усилием равным реальному натягу уплотнения надетого на вал, поджимает уплотнение 5, который может быть размещен в углублении 6 вращающегося диска 3 (Фиг. 1), либо в углублении неподвижной пластины 4 (Фиг. 2). После этого, через отверстие 7, с помощью насоса (не показан) подается жидкая среда в выемку 8 диска 3. Воздух из емкости вытравливается через винтовое отверстие 9. После заполнения выемки 8 жидкой средой по всему объему, винтовое отверстие 9 закрывается и давление, которое контролируется манометром 10, доводится до необходимого значения. Затем, после закрытия крана (не показан) подачи жидкой среды от насоса и проверки герметичности системы, запускается двигатель сверлильного станка. Скорость вращения вала сверлильного станка и продолжительность трения устанавливаются в зависимости от триботехнических и уплотнительных свойств исследуемого материала, например: 1200 об/мин в течение 3 ч. Нарушение герметичности системы контролируется изменением показателя манометра 10. Также, с помощью нарушения параллельности плоскости обращенных друг к другу диска и пластины на заданный угол а (фиг. 3), можно проводить испытание материала на релаксацию в зависимости от скорости вращения и угла нарушения параллельности.
Благодаря компактности испытательного оборудования, исследование материалов можно проводить при различных температурах окружающей среды. Для этого, сверлильный станок либо помещается в термокамеру, либо выносится на улицу и исследование проводится при различных климатических температурах. Например, при заданном угле нарушения параллельности трущихся поверхностей, после проверки герметичности установка выносится на улицу, где температура воздуха отрицательная и после выдерживания времени кондиционирования, запускается привод. Так как при отрицательных температурах, например, у резины, который является основным материалом для подвижных уплотнений, уменьшается эластичность, можно исследовать потерю или восстановление свойств уплотнителя в зависимости от изменения угла а, скорости трения, температуры окружающей среды, вязкости и давления жидкой среды. Кроме того, благодаря простоте замены пластины 4, можно исследовать уплотнительные свойства резин в зависимости от материала пластины и шероховатости уплотняемой поверхности. А также, минимальное количество деталей и небольшой объем исследуемой жидкой среды, обеспечивают простоту ее замены, что позволяет проводить испытание уплотнения разных жидких сред.
Таким образом, предлагаемый способ испытания уплотнений является простым и эффективным способом исследования уплотнительных материалов в режимах жидкостного и полусухого трения под давлением жидкой среды без использования уплотняемого вращающегося вала.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТРИБОТЕХНИЧЕСКИХ ИСПЫТАНИЙ МАТЕРИАЛОВ ДЛЯ УПЛОТНЕНИЙ | 2012 |
|
RU2522832C1 |
УСТРОЙСТВО ДЛЯ ТРИБОТЕХНИЧЕСКИХ ИСПЫТАНИЙ МАТЕРИАЛОВ | 2011 |
|
RU2482464C2 |
ФЛАНЦЕВАЯ МЕТАЛЛИЧЕСКАЯ ПРОКЛАДКА | 2013 |
|
RU2554128C1 |
СТЕНД ДЛЯ ИСПЫТАНИЯ РАДИАЛЬНЫХ ПАР ТРЕНИЯ | 2005 |
|
RU2309389C2 |
УПЛОТНЯЮЩИЙ ЦИЛИНДР ДЛЯ БРИКЕТИРОВОЧНЫХ ПРЕССОВ | 1998 |
|
RU2145926C1 |
ШТОК КЛАПАНА С ОБРАБОТАННОЙ СМАЗКОЙ ПОВЕРХНОСТЬЮ | 2011 |
|
RU2575957C2 |
ЭЛЕКТРИЧЕСКИЙ ГЕРМОВВОД | 1996 |
|
RU2121180C1 |
СПОСОБ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ ТОРЦОВЫХ ПОВЕРХНОСТЕЙ КОЛЕЦ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ ИМПУЛЬСНОГО ТОРЦОВОГО УПЛОТНЕНИЯ (ИТУ), РАБОТАЮЩЕГО В КРИОГЕННЫХ СРЕДАХ (ВАРИАНТЫ) | 2016 |
|
RU2648425C2 |
Машина трения (варианты) | 2018 |
|
RU2686121C1 |
УПЛОТНЯЮЩЕЕ КОЛЬЦО ДЛЯ ЭЛЕКТРОДУГОВОЙ ПЕЧИ | 2007 |
|
RU2473854C2 |
Изобретение относится к способам триботехнических исследований уплотнительных материалов для подвижных соединений под давлением жидкой среды. Сущность: осуществляют испытание уплотнительных материалов путем трения исследуемого уплотнительного материала о поверхность смазываемого металлического тела. Трение происходит между уплотнением, размещенным в кольцеобразном углублении на плоскости, и противоположной плоскостью под давлением жидкой среды. Технический результат: упрощение способа триботехнических исследований уплотнительных материалов. 3 ил.
Способ триботехнических испытаний уплотнений, заключающийся в испытании уплотнительных материалов путем трения исследуемого уплотнительного материала о поверхность смазываемого металлического тела, отличающийся тем, что трение происходит между уплотнением, размещенным в кольцеобразном углублении на плоскости, и противоположной плоскостью под давлением жидкой среды.
Устройство для зажигания газоразрядных приборов с поджигательным электродом типа игнитрона | 1940 |
|
SU60218A1 |
СПОСОБ ТРИБОТЕХНИЧЕСКИХ ИСПЫТАНИЙ МАТЕРИАЛОВ ДЛЯ УПЛОТНЕНИЙ | 2012 |
|
RU2522832C1 |
Машина для испытания материалов трением | 1982 |
|
SU1325327A1 |
CN 202814786 U, 20.03.2013. |
Авторы
Даты
2020-08-21—Публикация
2018-11-19—Подача