Настоящее изобретение относится к гидрометаллургии и химической промышленности, в частности к способу извлечения редкоземельных элементов (РЗЭ) из фосфогипса, образующегося при сернокислотной переработке апатитового концентрата.
Известен способ извлечения редкоземельных элементов из фосфогипса (патент RU 2293781 С1, Локшин и др., опубликован 20.02.2007), по которому извлечение соединений РЗЭ проводят раствором серной кислоты, отделяют нерастворимый остаток, повышают степень пересыщения раствора по редкоземельным элементам для кристаллизации концентрата РЗЭ, отделяют концентрат от маточного раствора и перерабатывают. Извлечение РЗЭ проводят раствором серной кислоты с концентрацией 22-30 мас. % при соотношении Ж:Т от 1,8 до 2,2, в течение 20-30 мин для исключения спонтанной кристаллизации концентрата РЗЭ из раствора до отделения нерастворимого остатка.
К недостаткам способа следует отнести образование плохо фильтрующихся осадков, приводящих к потерям РЗЭ. Степень извлечения РЗЭ составляет 60-70%.
Известен способ извлечения редкоземельных элементов из фосфогипса (патент RU 2412265 С1, Абрамов и др., опубликован 20.02.2011), по которому проводят кислотную экстракцию соединений РЗЭ из фосфогипса, отделение нерастворимого осадка кристаллического гипса от экстракционного раствора и извлечение из экстракционного раствора РЗЭ. Кислотную экстракцию ведут раствором смеси серной и азотной кислот, при соотношении Ж:Т от 4 до 5, в течение от 8 до 12 минут при одновременном гидроакустическом воздействии с помощью роторно-пульсационного аппарата на экстракционную суспензию. Извлечение соединений РЗЭ из раствора проводят катионно-обменной сорбцией путем пропускания экстракционного раствора через сорбционный фильтр. Экстракционный раствор после извлечения из него РЗЭ подвергают регенерации и возвращают на стадию кислотной экстракции.
К недостаткам способа следует отнести большие объемы оборотных растворов, а также сложность технологии сорбционно-десорбционного извлечения РЗЭ.
Наиболее близким по технической сущности и достигаемому результату при использовании является способ извлечения редкоземельных элементов из фосфогипса, который включает карбонизацию фосфогипса с получением осадка фосфомела, растворение его в азотной кислоте с образованием продукционной суспензии и последующее отделение нерастворимого остатка - чернового концентрата редкоземельных элементов фильтрацией (патент RU 2509726 С2, Муллаходжаев и др., опубликован 20.03.2014).
Недостатком этого способа является получение концентрата РЗЭ с низким содержанием редкоземельных элементов 5%.
Техническим результатом предлагаемого изобретения является повышение содержания РЗЭ в получаемом концентрате.
Технический результат в предлагаемом способе извлечения РЗЭ из фосфогипса достигается при его обработке раствором карбоната аммония с получением мела, содержащего РЗЭ, растворении мела в избытке азотной кислоты, с получением пульпы, фильтрации пульпы от не растворившегося в азотной кислоте остатка, охлаждении полученного фильтрата и отделении скристаллизовавшегося тетрагидрата нитрата кальция, осаждении раствора щелочным реагентом и фильтрации с получением концентрата РЗЭ.
Растворение мела, содержащего РЗЭ, проводят в избытке азотной кислоты 120-150% от стехиометрии.
Охлаждение фильтрата проходит при температуре -10 ÷-15°С.
Процесс осаждения ведут при рН от 0,7 до 1,3.
Содержание РЗЭ в концентрате составляет 16%.
Сущность способа заключается в том, чтобы при растворении мела в азотной кислоте обеспечить полный перевод ионов кальция и РЗЭ в раствор в виде нитрата, сконцентрировать РЗЭ в растворе путем выделения тетрагидрата нитрата кальция из раствора, осадить РЗЭ щелочным реагентом и тем самым получить концентрат с содержанием РЗЭ 16 мас. %.
Осуществление процесса извлечения РЗЭ из фосфогипса иллюстрируют следующие примеры.
Пример 1.
Разложение фосфогипса проводят 32%-ным раствором карбоната аммония с получением раствора сульфата аммония и карбоната кальция по уравнению
CaSO4+(NH4)2CO3 → СаСО3+(NH4)2SO4.
Навеску фосфогипса 100 г с содержанием РЗЭ 0,44 мас. % дозируют в раствор карбоната аммония 193,7 г с температурой 40-55°С, после чего выдерживают при перемешивании в течение 6 часов. Расход раствора карбоната аммония составляет 115% от стехиометрической нормы по кальцию. Полученную пульпу в количестве 293,7 г фильтруют под вакуумом. Фильтрат (раствор сульфата аммония) нейтрализуют раствором 92%-ной серной кислоты в количестве 8,8 г до рН 5 и упаривают до получения кристаллического сульфата аммония. Осадок (влажный мел) в количестве 65 г промывают водой в соотношении Т:Ж=1:2, после чего растворяют в 155 г 58%-ной азотной кислоты (130% от стехиометрии). Степень перехода РЗЭ в раствор при таких условиях составляет ~ 99%. Получаемую на этой стадии пульпу фильтруют от гипса и не растворимого в кислоте остатка. Фильтрат в количестве 192 г охлаждают до температуры -10 ÷ -15°С и отделяют скристаллизовавшийся тетрагидрат нитрата кальция в количестве 92 г фильтрацией. Раствор после выделения тетрагидрата нитрата кальция нейтрализуют мелом до рН 1,1 и фильтруют. Полученный осадок РЗЭ 2,7 г содержит: СаО - 25%, P2O5 - 20%, SO4 - 1%, TR2O3 - 16%, F - 6%.
Состав мела (в пересчете на сухое вещество): СаО - 49%, SO4 - 3%, Р2О5 - 2%, не растворимый в кислоте остаток - 3,9%, TR2O3 - 0,8%).
Пример 2.
Разложение фосфогипса раствором карбоната аммония с получением раствора сульфата аммония и карбоната кальция проводят аналогично примеру 1. Полученную пульпу фильтруют под вакуумом. Осадок (влажный мел) в количестве 100 г растворяют в 221 г раствора 58%-ной азотной кислоты (120% от стехиометрии). Степень перехода РЗЭ в раствор при таких условиях составляет ~ 99%. Получаемую на этой стадии пульпу фильтруют от гипса и не растворимого в кислоте остатка. Фильтрат в количестве 265 г охлаждают до температуры -15°С и отделяют скристаллизовавшийся тетрагидрат нитрата кальция в количестве 172 г фильтрацией. Раствор после выделения тетрагидрата нитрата кальция нейтрализуют аммиаком до рН 0,7 и фильтруют. Полученный осадок РЗЭ 4,2 г содержит: СаО - 25%, P2O5 - 22%, SO4 - 1%, TR2O3 - 16%, F - 7%.
Состав мела (в пересчете на сухое вещество): СаО - 49%, SO4 - 3%, Р2О5 - 2%, не растворимый в кислоте остаток - 3,9%, TR2O3 - 0,8%.
Пример 3.
Разложение фосфогипса раствором карбоната аммония с получением раствора сульфата аммония и карбоната кальция проводят аналогично примеру 1. Полученную пульпу фильтруют под вакуумом. Осадок (влажный мел) в количестве 100 г растворяют в 276 г раствора 58%-ной азотной кислоты (150%) от стехиометрии). Степень перехода редкоземельных элементов в раствор при таких условиях составляет ~ 99%. Получаемую на этой стадии пульпу фильтруют от гипса и не растворимого в кислоте остатка.
Фильтрат в количестве 321 г охлаждают до температуры -15°С и отделяют скристаллизовавшийся тетрагидрат нитрата кальция в количестве 170 г фильтрацией. Раствор после выделения тетрагидрата нитрата кальция нейтрализуют известковым молоком до рН 1,3 и фильтруют. Полученный осадок РЗМ 4,2 г содержит: СаО - 25%, P2O5 - 18%, SO4 - 1%, TR2O3 - 16%, F - 6%.
Состав мела (в пересчете на сухое вещество): СаО - 49%, SO4 - 3%, P2O5 - 2%, не растворимый в кислоте остаток - 3,9%, TR2O3 - 0,8%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ФОСФОГИПСА | 2012 |
|
RU2509726C2 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО УГЛЕКИСЛОГО КАЛЬЦИЯ И АЗОТНО-СУЛЬФАТНОГО УДОБРЕНИЯ В ПРОЦЕССЕ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ФОСФОГИПСА | 2012 |
|
RU2509724C1 |
СПОСОБ ПЕРЕРАБОТКИ АПАТИТОВЫХ РУД И КОНЦЕНТРАТОВ | 2015 |
|
RU2614962C1 |
СПОСОБ ПЕРЕРАБОТКИ КОНЦЕНТРАТА РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ | 2015 |
|
RU2595672C1 |
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ФОСФАТА ДЛЯ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ | 2014 |
|
RU2560802C1 |
Способ обработки фосфогипса | 1977 |
|
SU779365A1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ФОСФОГИПСА | 2004 |
|
RU2258036C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ НИТРОФОСФАТНОГО РАСТВОРА ПРИ АЗОТНОКИСЛОТНОЙ ПЕРЕРАБОТКЕ АПАТИТОВОГО КОНЦЕНТРАТА | 2014 |
|
RU2559476C1 |
СПОСОБ ПЕРЕРАБОТКИ ФОСФОГИПСА ДЛЯ ПРОИЗВОДСТВА КОНЦЕНТРАТА РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ И ГИПСА | 2013 |
|
RU2520877C1 |
СПОСОБ ОБЕСПЕЧЕНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРОИЗВОДСТВЕННЫХ ОТХОДОВ В ВИДЕ ФОСФОГИПСА С ПОЛУЧЕНИЕМ ДВУХКОМПОНЕНТНОГО ЦЕЛЕВОГО ПРОДУКТА | 2016 |
|
RU2630072C2 |
Изобретение относится к способу извлечения редкоземельных элементов из фосфогипса, образующегося при сернокислотной переработке апатитового концентрата. Способ включает обработку фосфогипса раствором карбоната аммония с получением мела, содержащего РЗЭ. Растворение мела проводят в избытке азотной кислоты 120-150% от стехиометрии с получением пульпы, которую фильтруют от не растворившегося в азотной кислоте остатка, а полученный фильтрат охлаждают до температуры -10 ÷ -15°С и отделяют скристаллизовавшийся тетрагидрат нитрата кальция. Раствор осаждают щелочным агентом при pH от 0,7 до 1,3 и фильтруют с получением концентрата РЗЭ. Способ позволяет повысить содержание редкоземельных элементов в полученном концентрате. 1 з.п. ф-лы, 3 пр.
1. Способ извлечения редкоземельных элементов (РЗЭ) из фосфогипса, включающий обработку фосфогипса раствором карбоната аммония с получением мела, содержащего РЗЭ, растворение мела в азотной кислоте, отличающийся тем, что растворение мела проводят в избытке азотной кислоты 120-150% от стехиометрии с получением пульпы, которую фильтруют от не растворившегося в азотной кислоте остатка, а полученный фильтрат охлаждают до температуры -10 ÷ -15°С и отделяют скристаллизовавшийся тетрагидрат нитрата кальция, осаждают раствор щелочным агентом при pH от 0,7 до 1,3 и фильтруют с получением концентрата РЗЭ.
2. Способ по п. 1, отличающийся тем, что содержание РЗЭ в концентрате составляет 16 мас.%.
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ФОСФОГИПСА | 2012 |
|
RU2509726C2 |
Способ извлечения редкоземельных элементов из фосфогипса | 1970 |
|
SU340262A1 |
Телефон | 1927 |
|
SU6905A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ СОДЕРЖАЩЕГО ВОССТАНОВИТЕЛЬ ГАЗОВОГО ПОТОКА | 2007 |
|
RU2455502C2 |
DE 102014203171 A1, 27.08.2015. |
Авторы
Даты
2020-12-23—Публикация
2020-03-19—Подача