Изобретение относится к ракетной технике, а именно к жидкостным ракетным двигателям (ЖРД) и различной компоновке их в составе первой ступени ракетоносителя.
Для решения космических задач требуется создание высокоэффективных и надежных ЖРД. Получение высокой эффективности ЖРД может быть достигнуто за счет использования вместо первой и второй ступеней в ракетоносителе двухрежимного жидкостного двигателя, который имел бы характеристики у земли, подобные двигателю первой ступени, а на высоте - двигателю второй ступени.
К числу известных способов, позволяющих повысить эффективность работы ЖРД по траектории, относятся изложенные в патентах на изобретение РФ №2638420 от 05.07.2016 г. и №2682466 от 21.06.2018 г.
Недостатком описанных в них конструкций является сложность в охлаждении кольцевого критического сечения и существенного увеличения охлаждаемой поверхности (патент №2682466), что приводит к ухудшению массовых характеристик и понижению энергетических.
В конструкции жидкостного ракетного двигателя для первой ступени носителя, изложенной в патенте на изобретение №2626617 от 11.05.2016 г., вокруг центрального тела расположены сверхзвуковые сопла с обтекателями.
Недостаток данной конструкции состоит в том, что центральное тело занимает большую площадь поперечного сечения ступени, что не позволяет существенно увеличить тягу двигателя.
В книге «Основы теории и расчета жидкостных ракетных двигателей» авторов А.П. Васильев, В.М. Кудрявцев и др. на стр. 342 (рис. Х.22) приведены схемы расположения двигателей вокруг центрального тела, объединенные общим наружным и внутренним сверхзвуковым контуром.
На рис. Х.23 приведена схема многокамерного двигателя большой тяги на основе отдельных двигателей, объединенных соплом внутреннего расширения - принятая за прототип.
Недостатком вышеописанных конструкций и прототипа является:
- наличие газодинамических потерь из-за взаимного пересечения сверхзвуковых струй в сопле внутреннего расширения;
- неиспользование полностью миделя ступени при расположении отдельных двигателей по кольцу вокруг центрального тела;
- увеличение массы ступени при выполнении сопла внутреннего расширения с регенеративным охлаждением.
Перечисленные недостатки устраняются предлагаемым изобретением, которое решает техническую задачу повышения среднетраекторного удельного импульса ступени ракетоносителя, снижения массы и повышения надежности.
Поставленная задача решается тем, что ступень ракетоносителя, работающего в плотных и разряженных слоях атмосферы, содержащая жидкостные ракетные двигатели с соплами предварительного (земного) расширения, кольцевую обечайку, закрепленную с корпусом ступени, обтекатели и общую юбку, согласно изложению, юбка выполнена из углерод-углеродного композиционного материала, закреплена с кольцевой обечайкой, в которой выполнены отверстия для подачи горючего на внутреннюю поверхность юбки, а на торцевой поверхности между соплами предварительного расширения, занимающими весь мидель ступени, и юбкой установлены обтекатели, образованные пересечением поверхностей сопел предварительного расширения и поверхности юбки.
Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1-4.
Ступень ракетоносителя, работающего в плотных и разряженных слоях атмосферы (фиг. 1), включает в себя:
- жидкостные ракетные двигатели 1 с соплами предварительного расширения 2, установленные в корпусе ракетоносителя 3;
- юбку 4, закрепленную с обечайкой 6;
- обтекатели 5, выполненные из углерод-углеродного композиционного материала, установленные на торцевой поверхности между соплами предварительного расширения 2.
На фиг. 2 показан вид А со стороны юбки, где:
2 - сопла предварительного расширения;
3 - корпус;
4 - юбка, выполненная из углерод-углеродного композиционного материала;
5 - обтекатели из углерод-углеродного материала, образованные пересечением поверхностей сопел предварительного расширения 2 и поверхности юбки 4;
7 - отверстия для подачи горючего.
На фиг. 3 показан элемент I крепления юбки 4 с обечайкой 6, в которой выполнены отверстия 7 для защиты внутренней поверхности юбки 4 от продуктов сгорания, вытекающих из сопел предварительного расширения 2.
На фиг. 4 показан фрагмент крепления обтекателя 5 с корпусом 3 и расположение отверстий 7 между юбкой 4 и обтекателем 5.
Ступень ракетоносителя работает следующим образом.
По соответствующим командам подаются компоненты топлива в жидкостные двигатели 1 и подача горючего из обечайки 6 и отверстия 7 на внутреннюю поверхность юбки 4. После воспламенения продукты сгорания компонентов топлива из сопел предварительного расширения 2 поступают в юбку 4, обтекая поверхности обтекателей 5. Благодаря обтекателям 5, газовые струи из сопел предварительного расширения 2 создают на поверхности обтекателей 5 дополнительное давление (вместо пониженного донного давления на поверхности между соплами предварительного расширения). При выходе из плотных слоев атмосферы часть ракетных двигателей отключается, и в разряженных слоях атмосферы работают не отключенные двигатели, выполняя функцию второй ступени.
Предложенное техническое решение уменьшает линейный размер ракетоносителя (одна ступень вместо двух), увеличивает тягу, снижает массу и повышает эффективность его полета по всей траектории полета.
название | год | авторы | номер документа |
---|---|---|---|
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ ПЕРВОЙ СТУПЕНИ РАКЕТОНОСИТЕЛЯ | 2016 |
|
RU2626617C1 |
КАМЕРА СГОРАНИЯ ДВУХРЕЖИМНОГО ЖРД, РАБОТАЮЩЕГО ПО БЕЗГЕНЕРАТОРНОЙ СХЕМЕ | 2018 |
|
RU2682466C1 |
КАМЕРА ЖРД С РЕГУЛИРУЕМЫМ СОПЛОМ | 2016 |
|
RU2640903C1 |
РЕГУЛИРУЕМЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2008 |
|
RU2380564C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2008 |
|
RU2383770C1 |
РЕГУЛИРУЕМЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2008 |
|
RU2378527C1 |
СПОСОБ УВЕЛИЧЕНИЯ ТЯГИ СВЕРХЗВУКОВОГО СОПЛА РАКЕТНОГО ДВИГАТЕЛЯ | 2013 |
|
RU2551244C2 |
РАКЕТНО-СТАРТОВЫЙ КОМПЛЕКС С РАКЕТНО-КАТАПУЛЬТНЫМ АППАРАТОМ ДЛЯ ПОЛЕТОВ НА ЛУНУ И ОБРАТНО | 2020 |
|
RU2743061C1 |
Компоновка маршевой многокамерной двигательной установки двухступенчатой ракеты-носителя с составным сопловым блоком | 2015 |
|
RU2610873C2 |
Многоразовая первая ступень ракеты-носителя | 2020 |
|
RU2744736C1 |
Изобретение относится к ракетной технике, а именно к жидкостным ракетным двигателям (ЖРД) и различной компоновке их в составе первой ступени ракетоносителя. Cтупень ракетоносителя, работающего в плотных и разряженных слоях атмосферы, содержащая жидкостные ракетные двигатели с соплами предварительного земного расширения, кольцевую обечайку, закрепленную с корпусом ступени, обтекатели и общую юбку, при этом юбка выполнена из углерод-углеродного композиционного материала, закреплена с кольцевой обечайкой, в которой выполнены отверстия для подачи горючего на внутреннюю поверхность юбки, а на торцевой поверхности между соплами предварительного расширения, занимающими весь мидель ступени, и юбкой установлены обтекатели, образованные пересечением поверхностей сопел предварительного расширения и поверхности юбки. Изобретение обеспечивает повышение среднетраекторного удельного импульса ступени ракетоносителя, снижения массы и повышения надежности. 4 ил.
Ступень ракетоносителя, работающего в плотных и разряженных слоях атмосферы, содержащая жидкостные ракетные двигатели с соплами предварительного земного расширения, кольцевую обечайку, закрепленную с корпусом ступени, обтекатели и общую юбку, отличающаяся тем, что юбка выполнена из углерод-углеродного композиционного материала, закреплена с кольцевой обечайкой, в которой выполнены отверстия для подачи горючего на внутреннюю поверхность юбки, а на торцевой поверхности между соплами предварительного расширения, занимающими весь мидель ступени, и юбкой установлены обтекатели, образованные пересечением поверхностей сопел предварительного расширения и поверхности юбки.
Васильев А.П., Кудрявцев В.М | |||
Основы теории и расчета жидкостных ракетных двигателей, М., Высшая школа, с.342, рис | |||
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
СОПЛОВОЙ БЛОК РАКЕТНОГО ДВИГАТЕЛЯ | 2003 |
|
RU2273761C2 |
СОПЛО МНОГОКАМЕРНОГО ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ | 1998 |
|
RU2140005C1 |
Штамп для калибровки изогнутых деталей | 1977 |
|
SU622539A1 |
US 3292865 A, 17.10.1963. |
Авторы
Даты
2020-12-29—Публикация
2020-06-16—Подача