Способ экспресс-диагностики состояния устойчивости колонн газовых скважин методом стоячих волн Российский патент 2021 года по МПК G01V1/00 G01V1/28 G01V1/30 

Описание патента на изобретение RU2745542C1

Изобретение относится к области геофизических методов контроля состояния колонн газовых скважин при их эксплуатации.

Одна из актуальных проблем диагностики устойчивости колонн газовых стволов скважин связана с появлением потери устойчивости колонн скважин. Потеря устойчивости может возникать вследствие размыва грунта, сезонных изменений, вызванных пучением грунта при замерзании и проседанием при оттаивании и т.д. Возникновение потери устойчивости в конечном итоге может привести к разрушению колонны газовой скважины, что может спровоцировать аварийную ситуацию на кусте газовой скважины (КГС).

Для обеспечения безопасной эксплуатации колонн газовых скважин (ГС) необходимо периодически контролировать их состояние. Такой контроль может осуществляться различными методами - с помощью визуального осмотра, измерением прогиба дефлектометрами, контролем верхней части разреза около скважин и т.д. [1-8]

Несмотря на разнообразие применяемых для контроля колонн газовых скважин методов и решаемых с их помощью задач, точность и достоверность получаемых результатов не всегда соответствует предъявляемым требованиям.

Задача изобретения - создание способа использования упругих стоячих волн для обнаружения потери устойчивости колонн газовых скважин, а также для оценки целостности колонн газовых скважин и соотношения акустических жесткостей верха и низа скважины.

Технический результат от использования изобретения установлены диагностические критерии определения устойчивости и целостности колонн скважин с использованием метода выделения стоячих волн по накопленным амплитудным спектрам, полученным при наблюдениях на колоннах газовых скважин, достигается контроль длины колонны газовой скважины и уверенная идентификация потери устойчивости исследуемого объекта.

Предлагаемый способ диагностики состояния устойчивости колонн газовых скважин базируется на описанном ранее пассивном сейсмическом методе [9-15], основанном на выделении из шумового поля стоячих волн, образующихся под воздействием микросейсм в пространстве между дневной поверхностью и ближайшей к ней резкой границей - верхней поверхностью полости Этот метод неоднократно применялся нами при физическом моделировании стоячих волн в различных объектах, а также был успешно опробован на результатах натурных экспериментов.

Как показали результаты физического моделирования и натурных экспериментов, накопление большого числа амплитудных спектров относительно коротких фрагментов шумовых записей приводит к появлению на усредненном спектре регулярных пиков, соответствующих стоячим волнам. Критерием того, что это именно стоячие волны, является регулярный характер этих пиков.

Для стоячих волн вертикального сжатия-растяжения, образующихся над свободной верхней границей полости, как на ней, так и на дневной поверхности должны наблюдаться пучности этих волн, а их частоты кратны частоте низшей моды:

где n - номер моды стоячих волн, Vp - скорость продольных волн, h - расстояние от верхней границы полости до дневной поверхности.

Таким образом, если на каком-либо участке местности распределение регулярных пиков усредненных амплитудных спектров на оси частот соответствует формуле (1), то это свидетельствует о наличии в таком месте подземной полости или иного включения с существенно пониженной относительно вмещающей среды скоростью.

Как будет показано ниже, указанные свойства изгибных стоячих волн могут быть использованы для выявления потери устойчивости колонн газовых скважин.

В случае колонны газовой скважины, уложенной на более мягкое основание, очевидно, что, при неизменных упругих свойствах, частоты стоячих волн вертикального сжатия-растяжения в ней практически не должны зависеть от того, лежит она на грунте, или под ней образовалась пустота. И в том, и в другом случае как на верхней, так и на нижней границе покрытия будут наблюдаться пучности стоячих волн, а их частоты определяются формулой (1).

Объект исследования и методика наблюдений

В качестве объекта исследования рассматривались колонны газовых скважин (КГС) с 3201 по 3211. Исследовались собственные колебания стволов газовых скважин методом, основанном на выделении стоячих волн из сейсмоакустических шумов. Суть метода сводится к накоплению большого числа амплитудных спектров шумовых записей, в результате чего на усредненных (или накопленных) спектрах появляются последовательности пиков, соответствующие семействам стоячих волн разных типов.

В описываемой серии экспериментов регистрация сейсмоакустических шумов проводилась в летний период исследуемых объектов. Для регистрации использовались горизонтальные и вертикальные геофоны GS20DX и одноканальные автономные цифровые регистраторы TEXAN (REFTEK-125A) с частотой дискретизации 1 кГц

Регистрация шумов производилась на внешних стенах стволов скважин. Для наилучшего контакта между датчиком и стволом скважины устанавливался магнит. Длительность непрерывной записи в каждой точке наблюдений составляла 60 минут

Результаты обработки шумовых данных, полученных на колоннах газовых скважин

При обработке экспериментальных данных зарегистрированные в каждой колонне газовой скважины шумовые записи разбивались на фрагменты длительностью примерно по 8.2 секунд (8192 отсчета), вычислялись амплитудные спектры этих фрагментов и проводилось их накопление. В результате на амплитудных спектрах появлялись резкие пики, которые, в случае регистрации вертикальных компонент соответствовали модам типа сжатия-расширения. На Рис. 1 приведен амплитудный спектр стоячих волн в обсадных колоннах ГС КГС-32. Вертикальная составляющая. Цифрами обозначены номера мод типа сжатия-расширения и их формы. На рисунке 1 наглядно видно, что частоты для каждой из скважин идут с равным интервалом, для наглядности приведены формы мод. Например, для скважины 3202 частоты с первой по третью моду соответствует 2.246, 4.491 и 6.738 Гц соответственно. Если предположить, что скорость продольных волн в КГС равна примерно 5000 м/с, а длина 1200 м, то согласно формуле (1) эти моды соответствуют именно модам типа сжатия-расширения для всей длины колонны (2.24 Гц=1×5000 (м/с) / (2×1200) (м)).

В случае если появляются дополнительные моды, помимо основных, типа сжатия-расширения с другим значением регулярных пиков, то это означает нарушенность колонны которую можно определить зная скорость распространения упругих волн в самой колонне. На рисунке 2 показан пример накопленного частотно-амплитудного спектра, где цифрами 1,2,3 (значения частот 2.539, 5,078, 7,61 Гц) обозначены моды типа сжатия-расширения соответствующие длине скважины 1200 м, а моды I, II, III (значения частот 3.125, 6.25, 9.375 Гц) тоже типа сжатия-расширения, но соответствуют длине скважины в 800 метров (см. формулу 1), что означает нарушенность на этой глубине (по проекту скважина 1200 метров).

На рисунке 3 приведены результаты всех амплитудных спектров, полученных с горизонтальных геофонов. Амплитудные спектры получились несколько иного характера, для ГС 3206, 3207, 3208 наблюдаются квазирегулярные пики, которые, как будет показано ниже, соответствуют изгибным стоячим волнам. А для остальных ГС не наблюдаются резкие пики, что говорит о том, что сдвиговой компоненты у них нет и не требуют дальнейшего рассмотрения.

Полученные экспериментальные результаты показали, что метод стоячих волн может с успехом применяться для обнаружения потери устойчивости колонн газовых скважин.

Кроме того показано, что анализ стоячих волн вертикального сжатия-растяжения, возникающих в газовой колонне скважины под воздействием шумов, позволяет контролировать ее длину и на качественном уровне оценивать соотношение акустических жесткостей верха и низа скважины.

В подтверждение полученных выводов было проведено моделирование методом конечных элементов в системе MSC Nastran

Для того чтобы определить к какому типу мод квазирегулярные типы относятся, в системе конечно-элементного моделирования MSC Nastran была смоделирована упрощенная модель где КГС не зафиксирована по горизонтали [16]. Учитывались следующие параметры: межколонное пространство - цемент, обсадная колонна d 426 мм -120 м, кондуктор d 324 мм - 450 м, промежуточная колонна d 245 мм - 750 м, НКТ с воронкой d 114 мм - 1570 м.

Поскольку свойства стали и цемента были неизвестны, то они подбирались таким образом, чтобы частоты наблюдаемых на амплитудном экспериментальном спектре (рис. 4) резких пиков примерно совпадали с какими-либо из множества получаемых при компьютерном моделировании собственных частот закрепленного отрезка трубы с известными внешними размерами. Элементы расчетной сетки - параллелепипеды с размерами 4.6×4.6 мм2 в плоскости сечения трубы и 10 мм в ее продольном направлении.

В результате моделирования выяснилось для изгибных мод хорошее согласование экспериментальных данных и результатов компьютерного моделирования может быть легко достигнуто подбором указанных параметров.

Один из вариантов такого подбора рассмотрен ниже. В системе конечно-элементного моделирования MSC Nastran есть возможность выбора из большого числа промышленно выпускаемых материалов с известными свойствами. В данном случае для модели КГС из этого набора материалов была выбрана одна из широко применяемых, в том числе при производстве труб, сталей. Параметры этой стали: скорость продольных волн Vp=4910 м/с, скорость поперечных волн Vs=2610 м/с, плотность ρ=7.41 г/см3. Параметры цемента: скорость продольных волн Vp=4310 м/с, скорость поперечных волн Vs=2310 м/с, плотность ρ=4.32 г/см3.

Результаты сравнения частот пяти пиков амплитудного экспериментального спектра для ГС 3207 и собственных частот, рассчитанных методом конечных элементов, показаны на рис. 4.

Как можно видеть, экспериментально определенные и полученные в результате компьютерного моделирования частоты хорошо согласуются, различия не превышают 5%. Анализ форм колебаний для приведенных на рис. 4 собственных частот, рассчитанных при компьютерном моделировании, показал, что это именно изгибные моды (формы пяти низших мод показаны на рис. 5, 1-5).

Моды других типов колебаний соответствующих порядков, кроме того, что имеют намного меньшие амплитуды, наблюдаются на более высоких частотах

После того как были рассчитаны и экспериментально определены типы мод, были рассчитаны максимальные смещения для горизонтальных компонент в течении часа записей для первой и второй мод изгибных колебаний. Для этого шумовые записи с колонн газовых скважин загружались в программную среду MSC Nastran, программа рассчитывала максимальные смещения колонны для каждой из мод колебаний.

В таблице 1 приведены максимальные смещения колонны ГС для первых и вторых мод изгибных колебаний.

Полученные экспериментальные результаты показали, что метод стоячих волн может с успехом применяться для обнаружения потери устойчивости колонн газовых скважин. Стоячие волны могут быть выделены из шумового поля с помощью накопления большого числа амплитудных спектров шумовых сигналов. Получены абсолютные смещения колонны скважины как по горизонтали, так и по вертикали. На качественном уровне это распределение согласуется с результатами проведенного компьютерного моделирования методом конечных элементов. Тот факт, что под воздействием акустического шума на некоторых колонах газовых скважин (а именно 3206, 3207, 3208) образуются изгибные стоячие волны, которые отсутствуют на других скважинах, свидетельствует об отсутствии жесткого контакта с массивом породы, особенно стоит обратить внимание на КГС 3207. Для первой, второй и третьей изгибной стоячей волны оценены абсолютные смещения, записанные в течении часа и их количество, которые находятся в диапазоне от 0.08 см до 3.78 см.

Кроме того показано, что анализ стоячих волн вертикального сжатия-растяжения, возникающих в газовой колонне скважины под воздействием шумов, позволяет контролировать ее длину и на качественном уровне оценивать соотношение акустических жесткостей верха и низа скважины.

Использованные источники информации

1. Datta S., Sarkar S. A review on different pipeline fault detection methods // Journal of Loss Prevention in the Process Industries. - 2016. - Vol. 41.

2. Olson D.E. Pipe vibration testing and analysis. American Society of Mechanical Engineers - 10.11151, Chapter 37. - 2008.

3. Lowe M.J.S., Alleyne D.N., Cawley P. Defect detection in pipes using guided waves // Ultrasonics. - 1998. - Vol. 36. - Iss. 1-5.

4. Lowe P.S., Sanderson R., Pedram S.K., Boulgouris N.V, Mudge P. Inspection of pipelines using the first longitudinal guided wave mode // Physics Procedia. - 2015. - Vol. 70.

5. Ahadi M., Bakhtiar M.S. Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals // Applied Acoustics. - 2010. - Vol. 71. - No 7.

6. Ozevin D., Harding J. Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity // International Journal of Pressure Vessels and Piping. - 2012. - Vol. 92.

7. Jin H., Zhang L., Liang W., Ding Q. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method // Journal of Loss Prevention in the Process Industries. - 2014. - Vol. 27.

8. Duan W., Kirby R., Prisutova J., Horoshenkov K. V. On the use of power reflection ratio and phase change to determine the geometry of a blockage in a pipe // Applied Acoustics. - 2015. - Vol. 87.

9. Федин K.B., Колесников Ю.И., Нгомайезве Л. Определение толщины льда по стоячим волнам // Процессы в геосредах. - 2019. - №4 (22). - С. 528-533

10. Колесников Ю.И., Федин К.В., 2017. Прямое определение резонансных свойств верхней части разреза по микросейсмам: натурный эксперимент. Технологии сейсморазведки, №3, с. 5-21.

11. Колесников Ю.И., Федин К.В., Нгомайезве Л. О влиянии сезонных изменений резонансных свойств приповерхностных грунтов на сейсмобезопасность сооружений // Сейсмостойкое строительство. Безопасность сооружений. 2019. No 3. С. 56-64.

12. Kolesnikov YI, Fedin KV. Detecting underground cavities using microtremor data: physical modelling and field experiment. Geophys Prospect 2018; 66:342-53.

13. Kolesnikov YI, Fedin KV. Ngomayezwec L. Direct determination of resonant properties of near-surface sediments using microtremor // Soil Dynamics and Earthquake Engineering Volume 125, October 2019, 105739.

14. Kolesnikov YI, Fedin KV. Ngomayezwec L. Direct determination of resonant properties of near-surface sediments using microtremor // Soil Dynamics and Earthquake Engineering Volume 125, October 2019, 105739.

15. Колесников Ю.И., Федин K.B., Лакиморе H. Экспериментальное обоснование применения акустических шумов для диагностирования надземных трубопроводов // Физико-технические проблемы разработки полезных ископаемых. - 2019. - №2. - С. 49-58

16. Рычков С.П. MSC.visualNASTRAN для Windows. - Москва: НТ Пресс, 2004.

Похожие патенты RU2745542C1

название год авторы номер документа
Способ определения участков коррозии труб методом выделения упругих стоячих волн из микросейсм 2021
  • Федин Константин Владимирович
  • Гриценко Антон Александрович
RU2758249C1
Способ определения плотности костной ткани на основе выделения стоячих волн из микросейсм периферического скелета 2020
  • Федин Константин Владимирович
  • Климонтов Вадим Валерьевич
RU2750976C1
Способ дефектоскопии металлов по акустическим шумам 2021
  • Федин Константин Владимирович
  • Болдырев Игорь Анатольевич
  • Рофе Аркадий Ростиславович
  • Гриценко Антон Александрович
RU2774101C1
Способ выявления скрытых дефектов в композиционных материалах методом стоячих волн 2023
  • Марилов Олег Константинович
  • Федин Константин Владимирович
RU2816673C1
Способ мониторинга вулканической активности на основе выделения стоячих волн 2022
  • Федин Константин Владимирович
  • Гриценко Антон Александрович
  • Громыко Павел Владимирович
  • Лисейкин Алексей Владимирович
RU2788829C1
СИСТЕМА ДИАГНОСТИКИ ПРОЦЕССОВ ГИДРОРАЗРЫВА ПЛАСТА И СПОСОБ ЕЁ РАБОТЫ 2022
  • Седакова Лилия Александровна
RU2792427C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И ТАНГЕНСА УГЛА ДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ ДИЭЛЕКТРИЧЕСКОЙ СТРУКТУРЫ 2019
  • Усанов Дмитрий Александрович
  • Никитов Сергей Аполлонович
  • Скрипаль Александр Владимирович
  • Пономарев Денис Викторович
  • Феклистов Владимир Борисович
  • Рузанов Олег Михайлович
  • Тимофеев Илья Олегович
RU2716600C1
Способ определения физического состояния зданий и сооружений 2022
  • Федин Константин Владимирович
  • Болдырев Игорь Анатольевич
  • Рофе Аркадий Ростиславович
  • Свириденко Дмитрий Иванович
  • Гриценко Антон Александрович
RU2802538C1
Способ сейсмического микрорайонирования с использованием коэффициента уязвимости 2021
  • Сенин Лев Николаевич
  • Сенина Татьяна Егоровна
RU2771156C1
СПОСОБ ГЕНЕРАЦИИ ХАОТИЧЕСКИХ МИКРОВОЛНОВЫХ ИМПУЛЬСОВ СУБНАНОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ 2020
  • Бир Анастасия Сергеевна
  • Гришин Сергей Валерьевич
RU2740397C1

Иллюстрации к изобретению RU 2 745 542 C1

Реферат патента 2021 года Способ экспресс-диагностики состояния устойчивости колонн газовых скважин методом стоячих волн

Изобретение относится к области геофизических методов контроля состояния колонн газовых скважин при их эксплуатации. Предложен способ использования упругих стоячих волн для обнаружения потери устойчивости колонн газовых скважин, а также для оценки целостности колонн газовых скважин и соотношения акустических жесткостей верха и низа скважины. Технический результат от использования изобретения - установлены диагностические критерии определения устойчивости и целостности колонн скважин с использованием метода выделения стоячих волн по накопленным амплитудным спектрам, полученным при наблюдениях на колоннах газовых скважин, достигается контроль длины колонны газовой скважины и уверенная идентификация потери устойчивости исследуемого объекта. 3 з.п. ф-лы, 5 ил., 1 табл.

Формула изобретения RU 2 745 542 C1

1. Способ экспресс-диагностики состояния устойчивости колонн газовых скважин методом выделения стоячих волн, состоящий в том, что регистрируемые на поверхности колонны газовой скважины или обсадной колонны шумовые записи с высокой частотой дискретизации разбивают на фрагменты и вычисляют их амплитудные спектры, затем для каждой точки наблюдений производят усреднение амплитудных спектров всех фрагментов и по появлению в усредненном спектре коротких фрагментов шумовых записей квазирегулярных пиков по горизонтальным компонентам устанавливают наличие стоячих волн, свидетельствующих об отсутствии жесткого контакта с массивом породы, при этом в случае регистрации вертикальных компонент по наличию резких регулярных пиков, соответствующих модам типа сжатия-расширения, оценивают целостность колонны газовой скважины, появление дополнительных мод, помимо основных, типа сжатия-расширения с другим значением регулярных пиков, свидетельствует о нарушенности колонны, местонахождение которой определяют, зная скорость распространения упругих волн в самой колоне.

2. Способ по п. 1, отличающийся тем, что непрерывную запись производят в течение 60 минут, а шумовые записи разбивают на фрагменты длительностью примерно 8.2 с.

3. Способ по п. 1, отличающийся тем, что в случае больших шумовых помех производят синхронную запись больше чем одним комплектом аппаратуры, при этом один комплект аппаратуры устанавливают на колонне газовой скважины, второй комплект устанавливают рядом на грунте.

4. Способ по п. 3, отличающийся тем, что после синхронной записи при накоплении амплитудных спектров всех фрагментов удаляют шумовые помехи, полученные от комплекта аппаратуры, установленного на грунте.

Документы, цитированные в отчете о поиске Патент 2021 года RU2745542C1

Колесников Ю.И., Федин K.B., Лакиморе H
"Экспериментальное обоснование применения акустических шумов для диагностирования надземных трубопроводов", Физико-технические проблемы разработки полезных ископаемых, 2019, номер 2, с
Способ смешанной растительной и животной проклейки бумаги 1922
  • Иванов Н.Д.
SU49A1
Колесников Ю.И., Федин К.В
"Прямое определение резонансных свойств верхней части разреза по микросейсмам:

RU 2 745 542 C1

Авторы

Федин Константин Владимирович

Даты

2021-03-26Публикация

2020-08-27Подача