СПОСОБ ПОЛУЧЕНИЯ ОЧИЩЕННОГО ГАЗОВОГО ПОТОКА Российский патент 2021 года по МПК B01D53/14 

Описание патента на изобретение RU2748547C2

Область техники

Изобретение относится к способу удаления сероводорода и диоксида углерода из потока исходного газа.

Уровень техники

Газовые потоки, такие как получаемые из скважин природного газа, обычно представляют собой потоки «кислого газа», поскольку часто содержат диоксид углерода и сероводород. H2S и CO2 должны быть удалены, прежде чем такие потоки газа могут быть использованы в дальнейшем.

Процессы удаления H2S и CO2 из «кислого газа» хорошо известны в данной области. Такие процессы обычно включают стадию абсорбции для удаления соединений серы и диоксида углерода из потока газообразного сырья путем контактирования такого потока газообразного сырья с растворителем, например аминовым растворителем, в абсорбционной колонне. Таким образом, получают очищенный газообразный поток, часто называемый «сладким газом», и растворитель, содержащий примеси. Загруженный растворитель обычно регенерируют в отпарной колонне для получения обедненного растворителя и потока газа, содержащего относительно высокую концентрацию H2S и CO2. Обедненный растворитель может быть возвращен в абсорбционную колонну.

Газовый поток, содержащий относительно высокую концентрацию H2S и CO2, может быть обработан на второй стадии поглощения. Например, он может быть подвергнут процессу Клауса для получения элементарной серы и отходящего газа Клауса. Отходящий газ Клауса часто подвергается процедурам удаления H2S и/или CO2.

Часто используемым процессом удаления CO2 из отходящего газа Клауса является обработка метилдиэтаноламином (МДЭА) или активированным МДЭА при повышенном давлении. Однако МДЭА чувствителен к деградации в присутствии H2S. Поэтому H2S часто удаляется перед обработкой (активированным) МДЭА. Обработка (активированным) МДЭА обычно выполняется при повышенном давлении. Поскольку отходящий газ Клауса, также после удаления H2S, обычно находится при атмосферном давлении, это требует повышения давления отходящего газа Клауса перед обработкой (активированным) МДЭА. Кроме того, из-за повышенного давления, при котором выполняется процесс, существует ограничение на размер блоков абсорбции. Таким образом, при работе с большими потоками отходящего газа Клауса требуется несколько компрессоров и несколько абсорбционных установок.

Данное изобретение направлено на улучшенный способ удаления сероводорода и диоксида углерода из потока исходного газа, особенно когда он включает обработку отходящего газа Клауса. Одной из целей является эффективное удаление CO2. Другая цель - упрощенная компоновка, предпочтительно с уменьшением количества необходимого оборудования. Другая цель состоит в том, чтобы иметь способ с уменьшенным потреблением энергии. В то же время желательно, чтобы способ обработки был менее чувствительным к присутствию H2S.

Сущность изобретения

Изобретение относится к способу удаления сероводорода и диоксида углерода из потока исходного газа, включающему следующие этапы:

(i) превращения сероводорода в потоке исходного газа до элементарной серы в установке Клауса, как результат получение элементарной серы и газового потока, содержащего пониженное количество сероводорода и диоксида углерода;

(ii) контактирования по меньшей мере части газового потока, полученного на этапе (i), с водной обедненной поглощающей средой в зоне абсорбции для поглощения углекислого газа и получения очищенного от диоксида углерода потока газа и отработанной поглощающей среды;

при этом давление в зоне абсорбции, используемое на этапе (ii), находится в диапазоне от 0,9 бар абс. до 2 бар абс., предпочтительно от 0,9 бар абс. до 1,5 бар абс.; и

при этом водная обедненная абсорбирующая среда, используемая на этапе (ii), содержит один или несколько аминов, выбранных из:

- полиамина в отсутствие эффективного количества третичных аминных функциональных групп, имеющих значение pKa (отрицательный десятичный логарифм от константы диссоциации кислоты), достаточное для нейтрализации карбаминовой кислоты, при этом полиамин содержит по меньшей мере одну первичную аминную функциональную группу, имеющую значение pKa, менее чем 10,0 при 25°C,

- полиамина в отсутствие эффективного количества третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, при этом полиамин содержит по меньшей мере одну вторичную аминную функциональную группу, имеющую значение pKa для каждого сорбирующего азота менее чем 10,0, при 25°C.

Данное изобретение представляет собой улучшенный способ по сравнению со способом, включающим обработку отходящего газа Клауса (активированным) МДЭА.

С помощью способа согласно изобретению достигается эффективное удаление CO2, в то же время можно использовать упрощенное технологическое оборудование. Поскольку нет необходимости повышать давление отходящего газа Клауса, способ может быть выполнен с меньшим количеством оборудования. Это также приводит к снижению потребления энергии. Кроме того, способ обработки, в котором перечисленные выше амины менее чувствительны к присутствию H2S ниже по потоку от установки Клауса.

Подробное описание сущности изобретения

Данное изобретение относится к способу удаления сероводорода и диоксида углерода из потока исходного газа в соответствии с пунктом 1 формулы изобретения. Поток исходного газа содержит сероводород и диоксид углерода и необязательно содержит другие загрязнители, такие как COS.

На этапе (i) сероводород в потоке исходного газа превращают в элементарную серу в установке Клауса. Получают газовый поток, содержащий уменьшенное количество сероводорода. Диоксид углерода не удаляется или почти не удаляется в способе Клауса и, таким образом все еще присутствует в потоке газа.

Предпочтительно поток исходного газа, используемый на этапе (i), содержит до 25 об.% диоксида углерода.

Этап (i) предпочтительно включает два этапа. На этапе (ia) сероводород в потоке исходного газа преобразуется в элементарную серу в установке Клауса, тем самым получая элементарную серу и поток газа, содержащий уменьшенное количество сероводорода и содержащий диоксид углерода. На этапе (ib) еще больше сероводорода удаляют из потока газа, полученного на этапе (ia), с помощью растворителя.

На этапе (ib) растворитель, содержащий амин, используется для удаления сероводорода, предпочтительно для селективного удаления сероводорода, а не для удаления или почти без удаления диоксида углерода. Получают поток, содержащий дополнительное уменьшенное количество сероводорода, а также еще содержащий CO2. Предпочтительно сероводород удаляют на этапе (ib) с помощью способа Шелла-Клауса очистки отходящего газа (SCOT). Другим подходящим способом удаления сероводорода на этапе (ib) является использование растворителя, такого как Flexsorb (ExxonMobil).

На этапе (ii) по меньшей мере часть газового потока, полученного на этапе (i), вводят в контакт с водной обедненной поглощающей средой в зоне поглощения. Выполняется поглощение углекислого газа. Получают поток очищенного от диоксида углерода газа. Получают отработанную поглощающую среду.

Давление в зоне абсорбции, используемой на этапе (ii), находится в диапазоне между 0,9 бар абс. и 2 бар абс., предпочтительно от 0,9 бар абс. до 1,5 бар абс.

Водная обедненная поглощающая среда, используемая на этапе (ii), содержит один или несколько аминов, выбранных из:

- полиамина в отсутствие эффективного количества третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, при этом полиамин имеет по меньшей мере одну первичную аминную функциональную группу, имеющую значение pKa менее чем 10,0, при 25°C,

- полиамина в отсутствие эффективного количества третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, при этом полиамин имеет по меньшей мере одну вторичную аминную функциональную группу, имеющую значение pKa для каждого сорбирующего азота менее чем 10,0 при 25°C.

Предпочтительными примерами «полиаминов в отсутствие эффективного количества третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, причем полиаминов, имеющих по меньшей мере одну первичную аминную функциональную группу, имеющую значение pKa менее чем 10,0 при 25°C» являются диэтилентриамин (ДЭТА), триэтилентетрамин (ТЭТА), тетраэтиленпентамин (ТЭПА) и их смеси.

Предпочтительный пример «полиамина в отсутствие эффективного количества третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, при этом полиамина имеющего по меньшей мере одну вторичную аминную функциональную группу, имеющую значение pKa для каждого сорбирующего азота менее чем 10,0 при 25°С» является N-(2-гидроксиэтил)пиперазин.

Поскольку этап (ii) не нужно выполнять при повышенном давлении, существует свобода в отношении конструкции и размера абсорбционных установок. При работе с большими потоками отходящего газа Клауса в большинстве случаев нет необходимости использовать несколько компрессоров и несколько абсорбционных установок. Скорее, в большинстве случаев будет достаточно избежать использования компрессора между этапом (i) и этапом (ii). Дополнительно или в качестве альтернативы в большинстве случаев будет достаточно использовать одну абсорбционную установку. Следовательно, в большинстве случаев достаточно одной цепочки.

Предпочтительно, чтобы газовый поток, который контактирует с водной обедненной поглощающей средой в зоне абсорбции на этапе (ii), не был под давлением выше 2 бар абс. между этапом (i) и этапом (ii). Предпочтительно, чтобы газовый поток, который контактирует с водной обедненной абсорбирующей средой в зоне абсорбции на этапе (ii), не находился под давлением, создаваемым компрессором, между этапом (i) и этапом (ii). Давление потока газа может быть немного выше атмосферного давления, так как требуется поток газа. Давление потока газа, используемого на этапе (ii), находится в диапазоне от 0,9 бар абс. до 2 бар абс., предпочтительно от 0,9 бар абс. до 1,5 бар абс.

Предпочтительно по меньшей мере 70%, более предпочтительно по меньшей мере 85%, еще более предпочтительно по меньшей мере 95%, наиболее предпочтительно весь поток газа, полученный на этапе (i), обрабатывают в одной абсорбционной установке на этапе (ii).

Способ по данному изобретению не очень чувствителен к H2S или к другим серосодержащим компонентам. Следовательно, обедненная абсорбирующая среда в зоне абсорбции на этапе (ii) может содержать сероводород и, необязательно, COS.

Таким образом, нет необходимости удалять уменьшенное количество H2S, которое все еще присутствует в потоке газа, который должен быть обработан на этапе (ii). Таким образом, например, нет необходимости сжигать газ, полученный на этапе (i) перед этапом (ii). Предпочтительно, чтобы газовый поток, который контактирует с водной обедненной абсорбирующей средой в зоне абсорбции на этапе (ii), не сжигали между этапом (i) и этапом (ii). Это позволяет экономить на сложности, а также на оборудовании.

Предпочтительно поток газа, который контактирует с водной обедненной абсорбирующей средой в зоне абсорбции на этапе (ii), содержит сероводород, диоксид углерода и, необязательно, COS.

В предпочтительном варианте реализации изобретения способ включает следующие этапы после этапа (ii):

(iii) регенерирование отработанной поглощающей среды, полученной на этапе (ii), в зоне регенерации для получения регенерированной водной поглощающей среды и диоксида углерода; а также

(iv) рециркуляция по меньшей мере части регенерированной водной поглощающей среды, полученной на этапе (iii), на этап (ii).

В предпочтительном варианте реализации изобретения, часть регенерированной водной поглощающей среды, полученной на этапе (iii), рециркулирует на этап (ii), а способ включает следующие этапы после этапа (iv):

(v) удаление термически стабильных солей из второй части регенерированной водной поглощающей среды, полученной на этапе (iii), предпочтительно с помощью ионообменной смолы, электродиализа, кристаллизации, или термической утилизации; а также

(vi) рециркуляцию по меньшей мере части регенерированной водной поглощающей среды, полученную на этапе (v) и имеющую пониженное содержание термостабильной соли, на этап (ii).

Предпочтительно этап (iii) выполняется в ребойлере, предпочтительно в ребойлере с котлом, ребойлере с принудительной циркуляцией, ребойлере с огневым подводом теплоты, ребойлере с падающей пленкой, паровом ребойлере или термосифоне, предпочтительно в термосифоне.

Похожие патенты RU2748547C2

название год авторы номер документа
УДАЛЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ БЕДНОГО КИСЛОГО ГАЗОВОГО СЫРЬЯ ДЛЯ ПОЛУЧЕНИЯ СЕРЫ 2016
  • Филлатр Эмиль
  • Пердю Готье
  • Маре Бенуа
RU2705974C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ОБОГАЩЕННОГО ДИОКСИДОМ УГЛЕРОДА КИСЛОГО ГАЗА В ПРОЦЕССЕ КЛАУСА 2011
  • Менцель Йоганнес
RU2545273C2
СПОСОБ УДАЛЕНИЯ SO2 ИЗ ГАЗА С ВРЕМЕННО ВЫСОКИМ СОДЕРЖАНИЕМ SO2 2018
  • Ли, Сицзянь
  • Ван, Фэндань
RU2754859C2
АБСОРБЕНТ ДЛЯ ИЗВЛЕЧЕНИЯ КИСЛЫХ ГАЗОВ, СОДЕРЖАЩИЙ АМИНОКИСЛОТУ И КИСЛЫЙ ПРОМОТОР 2010
  • Форберг Геральд
  • Катц Торстен
  • Зидер Георг
  • Риманн Кристиан
  • Вагнер Руперт
  • Лихферс Уте
  • Денглер Эрика
RU2531197C2
ВОДНАЯ АЛКАНОЛАМИНОВАЯ АБСОРБИРУЮЩАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ ПИПЕРАЗИН ДЛЯ УЛУЧШЕННОГО УДАЛЕНИЯ СЕРОВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ, И СПОСОБ ЕЕ ИСПОЛЬЗОВАНИЯ 2013
  • Ларош Кристоф Р.
  • Падилья Херардо
  • Хэлнон Тимоти Д.
RU2642071C2
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ОТ СЕРОВОДОРОДА 2012
  • Мнушкин Игорь Анатольевич
  • Гасанов Эдуард Сарифович
  • Чиркова Алена Геннадиевна
RU2526455C2
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ ОТДЕЛЕНИЯ СЕРОВОДОРОДА ОТ ГАЗОВЫХ СМЕСЕЙ С ПРИМЕНЕНИЕМ СМЕСИ ГИБРИДНЫХ РАСТВОРИТЕЛЕЙ 2017
  • Даудл, Джон Р.
  • Ларош, Кристоф Р.
  • Ортиз Вега, Диего
  • Пиртл, Линда Л.
RU2745356C1
СПОСОБ ДЛЯ СНИЖЕНИЯ ПОТРЕБЛЕНИЯ ЭНЕРГИИ ПРИ РЕГЕНЕРАЦИИ ГИБРИДНЫХ РАСТВОРИТЕЛЕЙ 2017
  • Даудл, Джон Р.
  • Ларош, Кристоф Р.
  • Ортиз Вега, Диего
  • Пиртл, Линда Л.
RU2729808C1
Способ и установка очистки природного газа от диоксида углерода и сероводорода 2016
  • Мнушкин Игорь Анатольевич
RU2624160C1
СПОСОБ И УСТАНОВКА ОЧИСТКИ ПРИРОДНОГО ГАЗА ОТ ДИОКСИДА УГЛЕРОДА И СЕРОВОДОРОДА 2014
  • Мнушкин Игорь Анатольевич
RU2547021C1

Реферат патента 2021 года СПОСОБ ПОЛУЧЕНИЯ ОЧИЩЕННОГО ГАЗОВОГО ПОТОКА

Изобретение относится к способу удаления сероводорода и диоксида углерода из потока исходного газа. H2S в потоке исходного газа преобразуется в элементарную серу в установке Клауса. По меньшей мере часть полученного газового потока контактирует с водной обедненной поглощающей средой в зоне абсорбции при давлении от 0,9 до 2 бар абс. Используемая водная обедненная поглощающая среда содержит один или более аминов, выбранных из: - полиамина в отсутствие третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, причем полиамин имеет по меньшей мере одну первичную аминную функциональную группу, имеющую значение pKa менее чем 10,0 при 25°C, - полиамина в отсутствие третичных аминных функциональных групп, имеющих значение pKa, достаточное для нейтрализации карбаминовой кислоты, причем полиамин имеет по меньшей мере одну вторичную аминную функциональную группу, имеющую значение pKa для каждого сорбирующего азота менее чем 10,0 при 25°C. Способ улучшен по сравнению со способом, включающим обработку отходящих газов Клауса (активированным) МДЭА. Эффективное удаление CO2 достигается при одновременном использовании упрощенной очереди с меньшим количеством оборудования. 7 з.п. ф-лы.

Формула изобретения RU 2 748 547 C2

1. Способ удаления сероводорода и диоксида углерода из потока исходного газа, содержащего до 25 об.% диоксида углерода, включающий следующие этапы:

(i) превращение сероводорода в потоке исходного газа до элементарной серы в установке Клауса, в результате чего получают элементарную серу и поток газа, содержащий пониженное количество сероводорода и содержащий диоксид углерода;

(ii) контактирование по меньшей мере части газового потока, полученного на этапе (i), с водной обедненной поглощающей средой в зоне абсорбции, чтобы поглощать диоксид углерода и чтобы получить поток газа, очищенный от диоксида углерода, и отработанную поглощающую среду;

при этом давление в зоне абсорбции, используемое на этапе (ii), находится в диапазоне от 0,9. до 2 бар абс.; и

при этом водная обедненная абсорбирующая среда, используемая на этапе (ii), содержит один или несколько аминов, выбранных из:

- диэтилентриамина (ДЭТА), триэтилентетрамина (ТЭТА), тетраэтиленпентамина (ТЭПА) и их смеси;

- N-(2-гидроксиэтил)пиперазина.

2. Способ по п. 1, отличающийся тем, что по меньшей мере 70% потока газа, полученного на этапе (i), обрабатывают в одной абсорбционной установке на этапе (ii).

3. Способ по п. 1 или. 2, отличающийся тем, что газовый поток, который контактирует с водной обедненной поглощающей средой в зоне абсорбции на этапе (ii), не был сожжен между этапом (i) и этапом (ii).

4. Способ по любому из предшествующих пунктов, отличающийся тем, что поток газа, который контактирует с водной жидкой обедненной поглощающей средой в зоне абсорбции на этапе (ii), содержит сероводород, диоксид углерода и, необязательно, COS.

5. Способ по любому из предшествующих пунктов, отличающийся тем, что этап (i) включает:

(ia) превращение сероводорода в потоке исходного газа в элементарную серу в установке Клауса с получением элементарной серы и потока газа, содержащего уменьшенное количество сероводорода и диоксида углерода;

(ib) удаление еще большего количества сероводорода из газового потока, полученного на этапе (ia), с помощью растворителя, содержащего амин, в результате чего получают поток, содержащий дополнительно пониженное количество сероводорода.

6. Способ по любому из предшествующих пунктов, отличающийся тем, что способ включает дополнительные этапы:

(iii) регенерирования отработанной поглощающей среды, полученной на этапе (ii), в зоне регенерации для получения регенерированной водной поглощающей среды и диоксида углерода; а также

(iv) рециркуляции по меньшей мере части регенерированной водной поглощающей среды, полученной на этапе (iii), на этап (ii).

7. Способ по п. 6, отличающийся тем, что на этапе (iv) часть регенерированной водной поглощающей среды, полученной на этапе (iii), рециркулируется на этап (ii), и при этом способ включает дополнительные этапы:

(v) удаления термически стабильных солей из второй части регенерированной водной поглощающей среды, полученной на этапе (iii), предпочтительно с помощью ионообменной смолы, электродиализа, кристаллизации или термической утилизации; а также

(vi) рециркуляции по меньшей мере части регенерированной водной поглощающей среды, полученной с пониженным содержанием термически стабильной соли, полученной на этапе (v), на этап (ii).

8. Способ по п. 6 или 7, отличающийся тем, что этап (iii) осуществляют в ребойлере,

предпочтительно в ребойлере с котлом, ребойлере с принудительной циркуляцией, ребойлере с огневым подводом теплоты, ребойлере с падающей пленкой, паровом ребойлере или термосифоне, предпочтительно в термосифоне.

Документы, цитированные в отчете о поиске Патент 2021 года RU2748547C2

US 2015151241 A1, 04.06.2015
US 2008159937 A1, 03.07.2008
СПОСОБ ИЗВЛЕЧЕНИЯ СЕРЫ ИЗ ГАЗА, СОДЕРЖАЩЕГО СЕРОВОДОРОД 1999
  • Борсбом Йоханнес
  • Ван Нисселроэй Петрус Франсискус Мария Тересия
RU2232128C2
СПОСОБ ОЧИСТКИ ГАЗОВ, ПОЛУЧЕННЫХ ИЗ УСТАНОВКИ ГАЗИФИКАЦИИ 2006
  • Нильсен Поул Эрик Хеилонд
RU2417825C2

RU 2 748 547 C2

Авторы

Абдоллахи, Фарханг

Джаст, Пол-Эммануэль

Сарлиз, Джон, Николас

Даты

2021-05-26Публикация

2017-10-31Подача