СПОСОБ ПРОИЗВОДСТВА СТРУКТУРЫ ЕДИНИЧНОЙ ЯЧЕЙКИ СИЛИКОНОВО-КАРБИДНОГО МОП-ТРАНЗИСТОРА Российский патент 2021 года по МПК H01L21/336 H01L29/786 

Описание патента на изобретение RU2749386C2

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к области техники полупроводниковых устройств, а конкретно к способу изготовления одноячеечной структуры полевого МОП-транзистора.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Карбид кремния обладает высокими эксплуатационными качествами, такими как широкая запрещенная зона, сильное электрическое поле пробоя, высокая дрейфовая скорость насыщения и хорошая теплопроводность, что делает этот материал идеальным для изготовления устройства, способного выдерживать большую мощность, высокую частоту, высокую температуру и излучение. Карбидокремниевый полевой МОП транзистор обладает рядом преимуществ, например, высокой диэлектрической прочностью, высокой плотностью тока, и включает задающий контур, аналогичный контуру биполярного транзистора с изолированным затвором, что, таким образом, обеспечивает широкую перспективу развития. В то же время, карбид кремния является единственным широкозонным полупроводниковым материалом, который может обеспечить высококачественный оксидный слой затвора посредством самоокисления. При этом технология термического окисления карбида кремния не разработана в достаточной степени на данный момент, и образуемый канал обладает низкой подвижностью носителей, поэтому сопротивление канала является причиной очень большого отношения сопротивления в пути тока, таким образом, значительно ограничивая улучшение проводимости устройства.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Цель изобретения: настоящее изобретение предназначено для обеспечения метода изготовления одноячеечной структуры полевого МОП-транзистора, которая может значительно уменьшить отношение сопротивления канала к сопротивлению во включенном состоянии.

Техническое решение: метод изготовления одноячеечной структуры карбидокремниевого полевого МОП-транзистора согласно настоящему изобретению включает следующие шаги:

S1: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя, удаление маски для ионного легирования в легированной области КАРМАНА Р-ТИПА и сохранение маски для ионного легирования в области вертикального проводящего канала, при этом область вертикального проводящего канала имеет изогнутую форму;

S2: легирование ионами первого типа на всей кристаллической пластине для образования области легирования КАРМАНА Р-ТИПА, при этом ион первого типа ион Р-типа;

S3: изготовление маски для легирования N-области: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя и удаление маски для ионного легирования в легированной N-области;

S4: легирование ионами второго типа на всей кристаллической пластине для образования N-области легирования, при этом канальная область включает первую канальную область, вторую канальную область и третью канальную область; длина каналов последовательно уменьшается; ион второго типа - ион N-типа; длина первой канальной области должна быть достаточной для выдерживания запирающего напряжения; благодаря эффекту отсечки смежных первых канальных областей, короткие каналы могут использоваться во второй канальной области и третьей канальной области, обеспечивая достаточную запирающую способность устройства.

S5: изготовление маски для легирования N+-области: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя и удаление маски для ионного легирования в легированной N+-области;

S6: легирование ионами второго типа на всей кристаллической пластине для образования N+-области легирования;

S7: изготовление маски для легирования Р+-области: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя и удаление маски для ионного легирования в легированной Р+-области;

S8: легирование ионами первого типа на всей кристаллической пластине;

S9: активация имплантируемых примесей посредством высокотемпературного отжига;

S10: удаление изолирующего слоя затвора области омического контакта;

S11: изготовление металлического слоя омического контакта;

S12: образование омических контактов Р-типа и N-типа при отжиге;

S13: изготовление электрода затвора в области электрода затвора для охвата всех областей канала; и

S14: выполнение изоляции затвора-истока и утолщение металла.

Кроме того, четвертая канальная область добавляется между смежными первыми канальными областями, чтобы обеспечить возможность улучшения запирающей способности одноячеечной структуры.

Кроме того, легированная Р+-область включает множество ромбовидных легированных Р+-частей; все легированные Р+-части располагаются по прямой линии и две смежных легированных Р+-части соединяются в вершине. Благодаря этому путь тока может значительно сокращаться, уменьшая, таким образом, сопротивление во включенном стоянии. В дополнение к этому, ввиду отсутствия зазора между двумя смежными легированными Р+-частями и между краем легированной Р+-области и краем области омического контакта упрощается процесс обработки.

Кроме того, длина первой канальной области составляет 0,5-1,5 мкм.

Кроме того, длина второй канальной области составляет 0,2-1,5 мкм.

Кроме того, длина третьей канальной области составляет 0,1-1,5 мкм.

Кроме того, длина четвертой канальной области составляет 0,1-1,5 мкм.

Более того, концентрация N-области легирования составляет 1е16-5Е19 см-2, концентрация N+-области легирования 1е18-1Е21.

Положительные эффекты: в настоящем изобретении раскрывается метод изготовления одноячеечной структуры карбидокремниевого полевого МОП-транзистора, отличающейся тем, что область проводящего канала имеет изогнутую форму, благодаря чему общая длина области вертикального проводящего канала может существенно увеличиваться, и в то же время, короткий канал может использоваться без опасения касательно преждевременного пробоя устройства в результате эффекта смыкания короткого канала, снижая, таким образом, отношение сопротивления канала к сопротивлению во включенном состоянии.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 схема, на которой приводится ионное легирование КАРМАНА Р-ТИПА согласно конкретному варианту осуществления настоящего изобретения;

Фиг. 2 схема, на которой приводится ионное легирование N-типа согласно конкретному варианту осуществления настоящего изобретения;

Фиг. 3 схема, на которой приводится ионное легирование N+-типа согласно конкретному варианту осуществления настоящего изобретения;

Фиг. 4 схема, на которой приводится ионное легирование Р+-типа согласно конкретному варианту осуществления настоящего изобретения;

Фиг. 5 схема, на которой приводится омический контакт согласно конкретному варианту осуществления настоящего изобретения;

Фиг. 6 взрыв-схема канала согласно конкретному варианту осуществления настоящего изобретения;

Фиг. 7 - структурная схема конкретного варианта осуществления настоящего изобретения с добавлением четвертой канальной области;

Фиг. 8 - схема квадратной Р+-области предыдущего уровня техники; и

Фиг. 9 - схема ромбовидной Р+-области согласно конкретному варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ

В S1, как показано на фиг. 1, маска для ионного легирования выполнятся на поверхности карбидокремниевого эпитаксиального слоя, маска для ионного легирования удаляется в легированной области КАРМАНА Р-ТИПА и маска для ионного легирования сохраняется в области вертикального проводящего канала, при этом область вертикального проводящего канала имеет изогнутую форму.

В S2 ионы первого типа имплантируются на всей кристаллической пластине для образования области КАРМАНА Р-ТИПА, при этом ион первого типа ион Р-типа.

В S3, как показано на фиг. 2, маска для легирования области выполняется на поверхности карбидокремниевого эпитаксиального слоя и маска для ионного легирования в легированной N-области 2 удаляется.

В S4 ионы второго типа имплантируются на всей кристаллической пластине для образования N-области легирования, при этом канальная область включает первую канальную область 6, вторую канальную область 7 и третью канальную область 8; длина каналов последовательно уменьшается; ион второго типа - ион N-типа.

В S5, как показано на фиг. 3, маска для легирования области выполняется на поверхности карбидокремниевого эпитаксиального слоя и маска для ионного легирования в легированной N+-области 3 удаляется.

В S6 ионы второго типа имплантируются на всей кристаллической пластине для образования N+-области легирования.

В S7, как показано на фиг. 4, маска для легирования области выполняется на поверхности карбидокремниевого эпитаксиального слоя и маска для ионного легирования в легированной Р+-области 4 удаляется.

В S8 ионы первого типа имплантируются на всей кристаллической пластине.

В S9 имплантируемые примеси активируются посредством высокотемпературного отжига.

В S10, как показано на фиг. 5, выполняется изолирующий слой затвора, а в области омического контакта N-типа 5 и области омического контакта Р-типа 4 изолирующие слои затвора удаляются.

В S11 металлический слой выполняется в области омического контакта N-типа 5 и области омического контакта Р-типа 4.

В S12 металлический слой, омические контакты N-типа и Р-типа между областью омического контакта N-типа 5 и области омического контакта Р-типа 4 образуются при отжиге.

В S13 электрод затвора выполняется в области электрода затвора для охвата всех областей канала.

В S14 выполняется изоляции затвора-истока и утолщение металла.

«Легированная Р+-область» - «область омического контакта Р-типа».

Легированная Р+-область 4 предыдущего уровня техники показана на фиг. 8; легированная Р+-область 4 включает множество квадратных легированных Р+-частей; предусматривается определенный зазор между смежными легированными Р+-частями, между верхним краем легированной Р+-части и верхним краем области омического контакта N-типа 5, а также между нижним краем легированной Р+-части и нижним краем области омического контакта N-типа 5. В дополнение к этому, как показано на фиг.8, ток проходит по двум смежным сторонам квадрата, путь тока является относительно длинным, а сопротивление во включенном состоянии высоким. В то же время, ширина области омического контакта N-типа 5 больше, чем ширина легированной Р+-области 4, и учитывая протекание тока и погрешность при фототравлении, обеспечивается достаточно большое значение расхождения в ширине.

Чтобы решить проблему предыдущего уровня техники, Р+-область 4 по конкретному варианту осуществления включает множество ромбовидных легированных Р+-частей, как показано на фиг. 9; все легированные Р+-части располагаются по прямой линии и две смежных легированных Р+-части соединяются в вершине. Как показано на фиг. 9, ток проходит по ромбовидной форме, которая может значительно сократить путь тока, тем самым снижая сопротивление во включенном состоянии. Кроме того, в дополнение к этому, ввиду отсутствия зазора между двумя смежными легированными Р+-частями и между краем легированной Р+-области 4 и краем области омического контакта N-типа 5 упрощается процесс обработки. Изменение сопротивления поперечного пути тока в результате погрешности при обработке структуры, как показано на фиг. 8, будет невозможным.

Как показано на фиг. 4, 5, 6 и 7, легированная Р+-область 4 включает множество ромбовидных легированных Р+-частей; все легированные Р+-части располагаются по прямой линии и две смежных легированных Р+-части соединяются в вершине. Благодаря этому путь тока может значительно сокращаться, уменьшая, таким образом, сопротивление во включенном стоянии. В дополнение к этому, так как путь тока N+-области сохранять не требуется, достаточный запас между областью омического контакта и легированной Р+-областью 4 не должен сохраняться.

В дополнение к этому, четвертая канальная область 9 может также добавляться между смежными первыми канальными областями 6, как показано на фиг. 7, для улучшения запирающей способности.

Похожие патенты RU2749386C2

название год авторы номер документа
КАРБИДОКРЕМНИЕВОЕ ПЕРЕКЛЮЧАЮЩЕЕ УСТРОЙСТВО И СПОСОБ ЕГО ПРОИЗВОДСТВА 2017
  • Хуанг, Рунхуа
  • Баи, Сонг
  • Тао, Йонгхонг
  • Ванг, Линг
  • Лиу, Ао
  • Ли, Шуян
  • Лиу, Хао
RU2740124C1
СПОСОБ ФОРМИРОВАНИЯ ВЫСОКОВОЛЬТНОГО КАРБИДОКРЕМНИЕВОГО ДИОДА НА ОСНОВЕ ИОННО-ЛЕГИРОВАННЫХ P-N-СТРУКТУР 2013
  • Рыжук Роман Валериевич
  • Каргин Николай Иванович
  • Гудков Владимир Алексеевич
  • Гусев Александр Сергеевич
  • Рындя Сергей Михайлович
RU2528554C1
ПОЛУПРОВОДНИКОВАЯ СТРУКТУРА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2021
  • Сяо, Деюань
RU2808084C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТОЧНОГО ТРАНЗИСТОРА С НЕВПЛАВНЫМИ ОМИЧЕСКИМИ КОНТАКТАМИ 2022
  • Егоркин Владимир Ильич
  • Беспалов Владимир Александрович
  • Журавлёв Максим Николаевич
  • Зайцев Алексей Александрович
RU2800395C1
СПОСОБ ИЗГОТОВЛЕНИЯ КМОП-СТРУКТУР 1990
  • Плащинский Г.И.
  • Саньков И.В.
  • Нагорный А.А.
  • Сидоренко Е.Б.
RU1759185C
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2010
  • Бубукин Борис Михайлович
  • Кастрюлёв Александр Николаевич
  • Рязанцев Борис Георгиевич
RU2431905C1
ПОЛУПРОВОДНИКОВАЯ СТРУКТУРА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2021
  • Хань, Цинхуа
RU2807501C1
Способ изготовления силового полупроводникового транзистора 2016
  • Басовский Андрей Андреевич
  • Рябев Алексей Николаевич
  • Ануров Алексей Евгеньевич
  • Плясунов Виктор Алексеевич
RU2623845C1
УСТРОЙСТВО ПОЛЕВОГО МОП-ТРАНЗИСТОРА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Снайдер Джон П.
RU2245589C2
БиКМОП-ПРИБОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2003
  • Манжа Николай Михайлович
  • Долгов Алексей Николаевич
  • Еременко Александр Николаевич
  • Клычников Михаил Иванович
  • Кравченко Дмитрий Григорьевич
  • Лукасевич Михаил Иванович
RU2282268C2

Иллюстрации к изобретению RU 2 749 386 C2

Реферат патента 2021 года СПОСОБ ПРОИЗВОДСТВА СТРУКТУРЫ ЕДИНИЧНОЙ ЯЧЕЙКИ СИЛИКОНОВО-КАРБИДНОГО МОП-ТРАНЗИСТОРА

Изобретение относится к способам изготовления одноячеечной структуры карбидокремниевого полевого МОП-транзистора. Согласно изобретению предложен способ изготовления структуры карбидокремниевого полевлшл МОП транзистора, в котором область проводящего канала имеет изогнутую форму и состоит из трех областей, при этом между первыми смежными областями расположены четвертые области, благодаря чему общая длина области вертикального проводящего канала может существенно увеличиваться, снижая, таким образом, отношение сопротивления канала к сопротивлению во включенном состоянии. 7 з.п. ф-лы, 9 ил.

Формула изобретения RU 2 749 386 C2

1. Способ изготовления одноячеечной структуры карбидокремниевого полевого МОП-транзистора, включающий следующие шаги:

S1: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя, удаление маски для ионного легирования в легированной области КАРМАНА Р-ТИПА и сохранение маски для ионного легирования в области вертикального проводящего канала, при этом область вертикального проводящего канала имеет изогнутую форму;

S2: легирование ионами первого типа на всей кристаллической пластине для образования области легирования КАРМАНА Р-ТИПА, при этом ион первого типа - ион Р-типа;

S3: изготовление маски для легирования N-области: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя и удаление маски для ионного легирования в легированной N-области;

S4: легирование ионами второго типа на всей кристаллической пластине для образования N-области легирования, при этом канальная область включает первую канальную область, вторую канальную область и третью канальную область; длина каналов последовательно уменьшается; ион второго типа ион N-типа;

S5: изготовление маски для легирования N+-oблacτи: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя и удаление маски для ионного легирования в легированной N+-области;

S6: легирование ионами второго типа на всей кристаллической пластине для образования N+-области легирования;

S7: изготовление маски для легирования Р+-области: изготовление маски для ионного легирования на поверхности карбидокремниевого эпитаксиального слоя и удаление маски для ионного легирования в легированной Р+-области;

S8: легирование ионами первого типа на всей кристаллической пластине;

S9: активация имплантируемых примесей посредством высокотемпературного отжига;

S10: удаление изолирующего слоя затвора области омического контакта;

S11: изготовление металлического слоя омического контакта;

S12: образование омических контактов Р-типа и N-типа при отжиге;

S13: изготовление электрода затвора в области электрода затвора для охвата всех областей канала; и

S14: выполнение изоляции затвора-истока и утолщение металла.

2. Способ по п. 1, отличающийся тем, что четвертая канальная область добавляется между смежными первыми канальными областями.

3. Способ по п. 1, отличающийся тем, что легированная Р+-область включает множество ромбовидных легированных Р+-частей, при этом все легированные Р+-части располагаются по прямой линии и две смежных легированных Р+-части соединяются в вершине.

4. Способ по п. 1, отличающийся тем, что длина первой канальной области составляет 0,5-1,5 мкм.

5. Способ по п. 1, отличающийся тем, что длина второй канальной области составляет 0,2-1,5 мкм.

6. Способ по п. 1, отличающийся тем, что длина третьей канальной области составляет 0,1-1,5 мкм.

7. Способ по п. 2, отличающийся тем, что длина четвертой канальной области составляет 0,1-1,5 мкм.

8. Способ по п. 1, отличающийся тем, что концентрация N-области легирования составляет 1е16-5Е19 см-2, концентрация N+-области легирования 1е18-1Е21.

Документы, цитированные в отчете о поиске Патент 2021 года RU2749386C2

Токарный резец 1924
  • Г. Клопшток
SU2016A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
US5998837 A, 07.12.1999.

RU 2 749 386 C2

Авторы

Хуанг Рунхуа

Баи Сонг

Тао Йонгхонг

Ванг, Линг

Даты

2021-06-09Публикация

2017-10-31Подача