Изобретение относится к объемным гидродвигателям, предназначенным для преобразования энергии потока рабочей жидкости в механическую энергию выходного звена, движущегося возвратно-поступательно. Предлагаемый диагностический комплекс герметичности гидроцилиндра предназначен для оценки герметизирующей способности его штокового и поршневого подвижных уплотнительных узлов при проведении диагностирования в рамках технического обслуживания и ремонта гидроцилиндров.
Известен способ испытания гидроцилиндров на герметичность по параметрам герметизирующей способности его уплотнительных узлов, заключающийся в создании перепада давления воздуха в результате перемещения штока испытываемого гидроцилиндра и определения утечек воздуха через уплотнители путем измерения давления воздуха в полости низкого давления, объема воздуха, вытесненного из полости высокого давления, и объема воздуха, поступившего в полость низкого давления при неподвижном штоке (см. Кобзов Д.Ю., Трофимов А.А. Способ испытания гидроцилиндров на герметичность. Патент РФ №2139510 от 20.07.99).
К недостаткам известного аналога следует отнести низкую достоверность и точность диагноза, применение и неизбежные потери дорогостоящей рабочей жидкости, статический режим испытания, который не соответствует рабочему динамическому, значительную энергоемкость процесса вследствие применения мощной насосной станции, низкую экологичность из-за утечек, подчас, агрессивной рабочей жидкости.
Наиболее близким техническим решением, принятым за прототип, является способ испытания гидроцилиндров на герметичность по параметрам герметизирующей способности его уплотнительных узлов, заключающийся в создании перепада давления воздуха в результате перемещения штока испытываемого гидроцилиндра и определения утечек воздуха через уплотнители путем измерения давления воздуха в полости низкого давления, объема воздуха, вытесненного из полости высокого давления, и объема воздуха, поступившего в полость низкого давления при неподвижном штоке; при этом дополнительно барометром, психрометром и термометрами контролируются соответственно давление, влажность и температура воздуха в месте проведения испытания (см. Кобзов Д.Ю. и др. Диагностирование гидроцилиндра по параметрам герметизирующей способности его уплотнительных узлов / Сб. материалов XTV Междунар. Науч.-практ. конф., посвящ. Дню космонавтики (09-13 апреля 2018 г., Красноярск) «Актуальные проблемы авиации и космонавтики», т. 1. - Красноярск, СибГУ им. М.Ф. Решетнева. С. 356-359).
К недостатку известного прототипа следует отнести невысокую точность определения утечек воздуха в динамическом режиме без контроля скорости перемещения штока, что снижает достоверность результатов испытания гидроцилиндра на герметичность.
Технический результат - повышение точности определения утечек воздуха и достоверности результатов испытания.
Технический результат достигается тем, что способ испытания на герметичность гидроцилиндров путем создания перепада давления воздуха в результате перемещения штока испытываемого гидроцилиндра и определения утечек воздуха через уплотнители путем измерения давления воздуха в полости низкого давления, объема воздуха, вытесненного движущимся поршнем из полости высокого давления, и объема воздуха, поступившего в полость низкого давления при неподвижном штоке, при этом барометром, психрометром и термометром контролируются соответственно: давление, влажность и температура воздуха в месте проведения испытания на герметичность гидроцилиндра, а спидометром, установленным на корпусе (гильзе) гидроцилиндра, контролируется скорость перемещения штока.
Сущность изобретения поясняется чертежом (Фиг. 1), на котором представлена принципиальная схема устройства для испытания гидроцилиндров на герметичность.
Устройство для испытания на герметичность гидроцилиндров (Фиг. 1) состоит из вентилей 1 … 4, мановакууметров 5, 6, газовых расходомеров 7, 8, соединительных магистралей 9, 10, выпускного 11 и впускного патрубков 12, а также барометра 13, психрометра (влагомера) 14, термометров 15 и спидометра 16.
Способ испытания гидроцилиндров на герметичность реализуется следующим образом.
Перепад давления воздуха создается в результате перемещения штока испытываемого гидроцилиндра, после чего определяются: утечки воздуха через уплотнители путем измерения давления воздуха в полости низкого давления, объема воздуха, вытесненного движущимся поршнем из полости высокого давления, и объема воздуха, поступившего в полость низкого давления при неподвижном штоке, и дополнительно барометром, психрометром и термометром контролируются соответственно: давление, влажность и температура воздуха в месте проведения испытания на герметичность гидроцилиндра, при этом спидометром, установленным на корпусе (гильзе) гидроцилиндра, контролируется скорость перемещения штока.
Эксплуатационная скорость перемещения штока гидроцилиндра находится в диапазоне (0,03…0,5) м/с (см. Васильченко В.А. Гидравлическое оборудование мобильных машин. - М.: Машиностроение, 1983. С. 87. Табл. 3.25). Рекомендуемая скорость dz/dt перемещения штока при испытании гидроцилиндра составляет (0,05…0,3) м/с (см. Васильченко В.А. Гидравлическое оборудование мобильных машин. - М.: Машиностроение, 1983. С. 102). При этом скорость выдвижения штока должна быть в ϕ-раз меньше скорости обратного хода штока гидроцилиндра и, с учетом всего вышеизложенного, составлять
что необходимо для обеспечения равных условий испытания поршневых уплотнителей, а именно для создания одинакового перепада давления через поршневой уплотнительный узел и тем самым для повышения точности оценки утечек воздуха через него при движении штока, то есть в динамическом режиме.
Параметр ϕ в выражении (1) характеризует отношение площади поперечного сечения поршневой полости к площади поперечного сечения штоковой (см. Васильченко В.А. Гидравлическое оборудование мобильных машин. - М.: Машиностроение, 1983. С. 87 и см. ГОСТ 6540-68. Гидроцилиндры и пневмоцилиндры. Ряды основных параметров. Изд-во стандартов, 1984. С. 5), рассчитывается для гидроцилиндров с односторонним штоком с диаметром поршня D1 и диаметром штока D2 по формуле (2)
и составляет ряд: 1,06; 1,12; 1,25; 1,33; 1,4; 1,6; 2; 2,5; 5 (см. ГОСТ 6540-68. Гидроцилиндры и пневмоцилиндры. Ряды основных параметров. Изд-во стандартов, 1984. С. 4 и 5). Для гидроцилиндров с двусторонним штоком этот параметр равен 1.
Кроме этого, скорость перемещения штока необходимо ограничивать условием, при котором избыточное давление в полостях гидроцилиндра не превышает значение 0,09 МПа, вызывающее самоуплотнение, «захлопывание» уплотнителей и исключающее возможность оценки утечек воздуха через них (см. Ереско С.П. Система управления надежностью уплотнений подвижных соединений гидроагрегатов строительных машин: Дис. … д.т.н. / КГТУ, Красноярск, 2003. С. 164).
Другими словами, при выдвижении штока скорость его перемещения не должна превышать скорость , при которой создаваемое движущимся поршнем избыточное давление воздуха в штоковой полости вызывает «захлопывание» уплотнителей, а при обратном ходе штока его скорость не должна быть больше скорости , при которой также возникает «захлопывание» уплотнителей, но уже в поршневой полости, то есть:
Тогда, окончательно, с учетом условий (1), (3) и (4), скорость выдвижения штока и привязанная к ней скорость его обратного хода аналитически связаны записью (5)
Таким образом, контроль величин и скорости перемещения штока в процессе испытания гидроцилиндра на герметичность позволяет повысить точность определения утечек воздуха в динамическом режиме и, как следствие этого, обеспечить достоверность результатов испытания в целом.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИСПЫТАНИЯ НА ГЕРМЕТИЧНОСТЬ ГИДРОЦИЛИНДРОВ | 1997 |
|
RU2139510C1 |
ГИДРОЦИЛИНДР | 2010 |
|
RU2447328C2 |
ГИДРОЦИЛИНДР | 2012 |
|
RU2534331C2 |
ГИДРОЦИЛИНДР | 2015 |
|
RU2602024C2 |
ПОЛЫЙ ГИДРОЦИЛИНДР | 2015 |
|
RU2596679C1 |
Стенд для испытаний механического теплового компенсатора | 2018 |
|
RU2701473C1 |
СПОСОБ ИСПЫТАНИЯ НА ГЕРМЕТИЧНОСТЬ ПРОХОДНЫХ ГЕРМОЭЛЕМЕНТОВ В СОСУДАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2371689C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ СОСУДОВ БОЛЬШОГО ОБЪЕМА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2409806C1 |
Гидроцилиндр | 1989 |
|
SU1807256A1 |
ГИДРОЦИЛИНДР | 2015 |
|
RU2595308C1 |
Изобретение относится к способам испытания гидроцилиндров на герметичность. Сущность: за счет перемещения штока испытываемого гидроцилиндра создают перепад давления воздуха. Измеряют давление воздуха в полости низкого давления; объем воздуха, вытесненный движущимся поршнем из полости высокого давления; объем воздуха, поступивший в полость низкого давления при неподвижном штоке. Дополнительно контролируют давление, влажность и температуру воздуха в месте проведения испытания. По измеренным параметрам определяют утечки воздуха через уплотнители. При этом давление воздуха в полостях гидроцилиндра устанавливают не превышающим 0,09 МПа, а скорость перемещения штока удерживают в диапазоне 0,05-3 м/с, контролируя ее спидометром, установленным на корпусе гидроцилиндра. Технический результат: повышение достоверности результатов испытания. 1 ил.
Способ испытания на герметичность гидроцилиндров путем создания перепада давления воздуха в результате перемещения штока испытываемого гидроцилиндра и определения утечек воздуха через уплотнители путем измерения давления воздуха в полости низкого давления, объема воздуха, вытесненного движущимся поршнем из полости высокого давления, объема воздуха, поступившего в полость низкого давления при неподвижном штоке, а барометром, психрометром и термометрами контролируются соответственно: давление, влажность и температура воздуха в месте проведения испытания, отличающийся тем, что давление воздуха в полостях гидроцилиндра устанавливают не превышающим 0,09 МПа, а скорость перемещения штока гидроцилиндра удерживают в диапазоне 0,05-3 м/с, контролируя ее спидометром, установленным на корпусе гидроцилиндра.
Д.Ю.Кобзов и др | |||
Диагностирование гидроцилиндра по параметрам герметизирующей способности его уплотнительных узлов / Актуальные проблемы авиации и космонавтики, 2018, т.1, N14, стр.356-359 | |||
Д.Ю.Кобзов и др | |||
Диагностирование гидроцилиндра по параметрам герметизирующей способности его уплотнительных узлов / Системы | |||
Методы | |||
Технологии, 2013, |
Авторы
Даты
2021-07-14—Публикация
2020-08-18—Подача