СПОСОБ АВТОМАТИЧЕСКОГО ВЫДЕЛЕНИЯ ФИЗИОЛОГИЧЕСКИХ СОСТОЯНИЙ МЕЛКИХ ЛАБОРАТОРНЫХ ЖИВОТНЫХ Российский патент 2021 года по МПК A61B5/37 A61B5/372 G06F17/14 

Описание патента на изобретение RU2751744C1

Изобретение относится к биомедицинским технологиям автоматической обработки сигналов электрической активности головного мозга. Оно может быть использовано напрямую в экспериментальной нейрофизиологии для изучения и диагностики физиологической и патологической активности нервной системы у лабораторных животных (мышей, крыс) с использованием методов регистрации электроэнцефалограмм (ЭЭГ) и электрокортикограмм (ЭКоГ).

Точное и аккуратное выделение нормальных физиологических и патологических состояний у лабораторных животных остается важной задачей экспериментальной нейрофизиологии, поскольку активность головного мозга меняется под влиянием экспериментальных воздействий и при хроническом развитии болезней, особенно при прогрессирующем развитии неврологических расстройств (например, эпилепсия). Диагностика моментов засыпания, пробуждения, начала и окончания эпилептической активности позволяет исследовать тонкие изменения характеристик активности головного мозга, предшествующие или возникающие в различных физиологических состояниях животных, например, как в исследованиях (Bazilio, D.S., et. al. (2019). \\ Experimental physiology, 104(9), 1408-1419; Liu, Y., & Zhang, N. (2019). \\ Neuroimage, 202, 116176). Более того, подобные разработки могут быть использованы в качестве основы для устройств диагностики и контроля бодрствования операторов.

На сегодня существует ряд способов автоматической разметки (выделения) некоторых специфичных фаз колебательной активности на ЭЭГ (пик-волновые эпилептические разряды, сонные веретена) и использованы для диагностики заболеваний центральной нервной системы. Эти частные способы описаны, например, в (Sitnikova, E., Hramov, A.E., Grubov, V., & Koronovsky, A.A. (2014). Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain research, 1543, 290-299; Короновский А.А., Макаров В.А., Павлов А.Н., Ситникова Е.Ю., Храмов А.Е. Вейвлеты в нейродинамике и нейрофизиологии. М.: Физматлит. 2013, 272 с).

Способы автоматического выделения различных фаз сигналов разработаны как на основе систем искусственного интеллекта (см, патенты RU 2415642, МПК A61B 5/0476 опубл. 04.102011; RU 2709168, МПК G06K 9/62, опубл. 16.12.2019), так и на базе частотно-временного анализа (RU 2337610, МПК A61B 5/00, опубл. 10.11.2008).

В то же время задача диагностики физиологических состояний у лабораторных животных (сон, бодрствование) решаются путем ручной обработки записей видео- и электроэнцефалографического сигналов (Sitnikova, E., et. al. (2016). \\ Brain research bulletin, 120, 106-116), а также автоматизированными методами на базе использования дополнительной регистрации мышечной активности и\или глазодвигательной активности (Van Luijtelaar, E.L.J.M., & Coenen, A.M.L. (1984). \\ Physiology & behavior, 33(5), 837-841; Chapotot, F., & Becq, G. (2010). \\ International Journal of Adaptive Control and Signal Processing, 24(5), 409-423; Sugi, T., Kawana, F., & Nakamura, M. (2009). \\ Biomedical Signal Processing and Control, 4(4), 329-337). Необходимость синхронной регистрации видеографии или дополнительных сигналов значительно усложняет и удорожает процесс выполнения экспериментальных работ.

Наиболее близким к предлагаемому решению является способ выделения веретеноподобных паттернов по временным данным электроэнцефалограммы (ЭЭГ), предназначенный для выделения характерных фаз поведения биологических систем (см. патент на изобретение РФ 2565993, МПК A61B 5/0476, опубл. 20.10.2015). Согласно данному способу, регистрируют сигнал ЭЭГ и осуществляют непрерывное вейвлетное преобразование; определяют мгновенное и интегральное распределения энергии вейвлетного спектра по временным масштабам, которые соответствуют частотным диапазонам 5-9 Гц для веретеноподобных паттернов и 9-16 Гц для сонных веретен. В каждый момент времени определяют суммарное значение энергии вейвлетного спектра и на основании мгновенных распределений энергии вейвлетного спектра определяют фазы поведения системы таким образом, чтобы в одной из фаз на выбранные диапазоны временных масштабов приходилась большая часть энергии вейвлетного спектра; усредняют мгновенные распределения энергий вейвлетного спектра по интервалу времени в диапазоне 1-1.5 с, задают пороговые значения энергии и по значениям энергии вейвлетного спектра, приходящимся на диапазоны 5-9 Гц и 9-16 Гц, определяют веретеноподобные паттерны.

Недостатком данного способа является узкая область применения, так как он позволяет определить только моменты возникновения веретеноподобных паттернов и по их наличию выявить интервалы эпилептической активности. Необходимость расчета суммарного значения энергии вейвлетного спектра в значимом частотном спектре для каждого момента времени увеличивает время расчета. Кроме того, вручную задаваемые пороговые значения для каждого животного снижают точность и возможность использования метода в автоматическом режиме.

Технической проблемой изобретения является разработка метода автоматической диагностики физиологических состояний (сна и бодрствования) и патологической активности (эпилептические разряды типа "пик-волна") на основе математического анализа электрокортикограмм, зарегистрированных у лабораторных крыс в условиях свободного поведения.

Техническим результатом изобретения является расширение функциональных возможностей при ускорении за счет автоматизации процесса диагностики и повышении точности.

Технический результат достигается тем, что способе диагностики физиологических состояний животных, включающем регистрацию сигнала электрической активности головного мозга, осуществление его непрерывного вейвлетного преобразования и определение мгновенного распределения энергии вейвлетного спектра по временному масштабу в частотных диапазонах, диагностирование физиологического состояния по пороговым значениям характеристик энергий колебательной активности, согласно решению, в качестве сигнала х(t) регистрируют, по крайней мере, одну электрокортикограмму (ЭКоГ), мгновенное распределение энергии непрерывного вейвлетного преобразования определяют в четырех частотных диапазонах 2,5-4,5; 5-10; 10,5-12,5; 15-18 Гц, усредняют значения мгновенных энергий вейвлетного спектра в указанных частотных диапазонах во временном окне 0.5 с, рассчитывая усредненные характеристики энергий , ; по общей длительности временного сигнала ЭКоГ автоматически рассчитывают пороговые значения ε1, ε2, ε1sw, ε2sw усредненных характеристик усредненных характеристик по формулам:

где α1=1.3, α2=0.45, β1=1.75, β2=1.55, N - общее количество отсчетов в сигнале ЭКоГ, T - длительность сигнала ЭКоГ в секундах; находят моменты пересечения порогов ε2, ε1 характеристикой , по которым детектируют моменты начала состояний сна и бодрствования; находят моменты пересечения порогов характеристикой , по которым диагностируют моменты начала и окончания состояния эпилептической активности.

Дополнительно вводятся независимые ограничения для определяемых интервалов различных физиологических состояний. Состояние сна диагностируют на временном интервале Δts, на протяжении которого характеристика >ε2, состояние бодрствования диагностируют на временных интервалах Δta, на протяжении которого характеристика <ε2, длительность временных интервалов Δts и Δta ограничена снизу 10 с; состояние эпилептической активности диагностируют на временном интервале [] при выполнении условия , где характеристики и , рассчитываются по формулам:

;

,

где max(x(t)) и min(x(t)) - максимальные и минимальные экстремумы сигнала ЭКоГ x(t).

Для реализации данного способа разработаны новые принципы оптимизированного автоматического анализа электрокортикограмм, полученных с помощью эпидуральных электродов, вживленных в кости черепа над корой больших полушарий. Метод протестирован на электрокортикограммах, зарегистрированных в условиях свободного поведения у взрослых крыс с врожденной склонностью к развитию абсанс-эпилепсии. Способ исключает привлечения иных методов мониторинга (видеорегистрация или регистрация мышечной активности)

Изобретение поясняется чертежами. На фиг. 1-3 показаны примеры видео-регистрации электрокортикограмм у 9-месячной крысы линии WAG/Rij с генетической предрасположенностью к абсанс-эпилепсии: состояния сна фиг. 1, бодрствования фиг. 2 и эпилептической активности в виде пик-волнового разряда фиг. 3, которые были использованы нейрофизиологом для идентификации состояний. Справа показаны записи электрокортикографического сигнала в милливольтах, полученного от трех точек (каналов): двух симметричных областей левой и правой лобной коры (FrL и FrR соответственно) и затылочной коры справа (OcR). Размерность временной шкалы - мин:сек. На фиг. 4 представлен типичный фрагмент состояний сна (BS, серый цвет) и бодрствования (AW) по данным визуальной разметки нейрофизиолога с использованием видеорегистрации животного (а) и временной зависимости , рассчитанной по электрокортикографическому сигналу x(t), синхронному с видеорегистрацией, (б). Горизонтальными толстыми пунктирными линиями выделены пороговые значения ε1, ε2, пунктирные вертикальные линии демонстрируют результаты автоматической и ручной диагностики состояний сна и бодрствования. На фиг. 5 показаны типичные фрагменты состояний бодрствования (AW) и эпилептической активности (SW, серый цвет) выделенных нейрофизиологом с использованием видеорегистрации животного (с); временная зависимость , рассчитанная по электрокортикографическому сигналу x(t), (д); на вставке В показан временной интервал [2825, 2850] секунд сигнала x(t), где соответствующая точка на зависимости показана стрелкой, горизонтальными толстыми пунктирными линиями выделены пороговые значения ε1sw, ε2sw, пунктирные вертикальные линии демонстрируют сравнение автоматической и ручной диагностики состояний эпилептической активности на фоне бодрствования.

Заявляемое техническое решение осуществляется следующим образом.

С головного мозга снимают временной сигнал электрокортикограммы x(t) длительностью T с частотой дискретизации (1\N), т.е. при регистрации Tс в записи x(t) присутствует N отсчетов. Для сигнала x(t) выполняется стандартный расчет НВП W(x,t) согласно [Hramov A.E. et al. Wavelets in neuroscience. - Springer Berlin Heidelberg, 2015] c использованием Морле-вейвлета в качестве базисного с параметром Ω0=2π, обеспечивающим возможность при анализе использовать классические частоты f фурье-преобразования [Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003].

В каждый момент времени t в каждом частотном диапазоне Δf1 [2,5; 4,5] Гц, Δf2 [5; 10] Гц, Δf3 [10,5; 12,5] Гц, Δf4 [15; 18] Гц рассчитываем сумму мгновенных энергий Е(f, t) НВП

Ограничение расчета мгновенной энергии исключительно в указанных частотных диапазонах позволяет снизить количество численных операций и затраты машинного времени при анализе сигнала.

Для каждого момента времени t0 рассчитаем характеристику , усредненную во временном окне Δt=0.5 с значение мгновенных энергий НВП в каждом частотном диапазоне Δf1-4:

где (t1=t0-0.5Δt), (t2=t0+0.5Δt).

Детектирование физиологических состояний сна и бодрствования проводится на основе анализа зависимости .

В случае наличия регистрации M сигналов ЭКоГ зависимость заменяем на аналогичную . Величины оцениваем для каждого регистрируемого сигнала x1(t)…xM(t). Зависимость рассчитываем согласно следующей формуле:

Использование большего числа ЭЭГ-записей позволяет повысить улучшить качество определения различных физиологических состояний животного.

Для каждого момента времени t0 вычислим для характеристики (2) усредненную характеристику во временном окне Δt=10 с:

где (t1=t0-0.5Δt), (t2=t0+0.5Δt).

Далее рассчитаем пороговые значения ε1 и ε2 по всей длительности T сигнала x(t):

где α1=1.3, α2=0.45. Пороговые значения ε1, ε2(5) являются индивидуальными для каждого животного.

Определим временные моменты t0=tz, в которые величина превышает пороговое значение ε1, т.е. (). Далее, находим ближайший временной момент t0=ts, ts<tz, в которых величина превосходит пороговое значение ε2, т.е., соотношение становится верным. Момент ts соответствует началу временного интервала сна животного. Моменты времени t0=ta, для которых соотношение становится верным, соответствуют моментам начала временного интервала бодрствования животного (и завершения интервала регистрации сна).

Состояние сна диагностируется на временном интервале Δts=[ts; ta] c, на протяжении которого величина непрерывно превосходит пороговое значение ε2.

Состояние бодрствования диагностируется на временных интервалах Δta=[ta; ts] c, на протяжении которого величина характеристики принимает значения ниже порогового ε2.

После диагностики состояний сна и бодрствования у животного по всей длительности сигнала ограничим снизу минимальную временную протяженность данных физиологических состояний пороговым значением T1=10 с. Если Δta<T1 или Δts<T1, то соответствующее физиологическое состояние считаем диагностированным ошибочно и оставляем неизменным диагностированное ранее по времени предыдущее физиологическое состояние.

Для детектирования состояния эпилептической активности определим характеристику согласно следующему соотношению

В случае наличия регистрации M сигналов характеристику заменяем на аналогичную . Величины оцениваем для каждого сигнала x1(t)…xM(t). Характеристику рассчитываем согласно следующей формуле:

Для каждого момента времени t0 рассчитаем характеристику , выполнив усреднение величины характеристики во временном окне 3 секунды:

где (t1=t0-1.5Δt), (t2=t0+1.5Δt), протяженность временного интервала Δt=3 с.

Далее введем пороговые значения ε1sw, ε2sw согласно следующим соотношениям, рассчитываемым для всей длительности T временного ряда x(t) электроэнцефалограммы:

где β1=1.75, β2=1.55. Пороговые значения ε1sw, ε2sw являются индивидуальными для каждого животного.

Момент начала состояния эпилептической активности детектируем в момент времени t1sw, для которого выполнено соотношение . Момент окончания состояния эпилептической активности детектируем в момент времени t2sw, для которого выполнено соотношение . Временной интервал [t1sw; t2sw] соответствует состоянию эпилептической активности.

Для детектирования эпилептической активности невозможно ввести временные пороги оценки их возникновения в связи с физиологическими особенностями данного состояния. При этом, прямое использование данных соотношений приводит к возникновению ложного детектирования колебательных артефактов на временных сигналах ЭКоГ.

Для исключения случаев ошибочной детекции используют процедуру оценки экстремумов (максимальных max(x(t)) и минимальных min(x(t)) экстремальных значений) сигнала x(t) во временном окне Δt=1 с за 5 с до приступа эпилептической активности и во время детектированного приступа эпилептической активности во временном интервале [t1sw; t2sw]. Для каждого детектированного временного интервала [t1sw; t2sw], соответствующего эпилептической активности, оцениваем величины Xmax, Xmin согласно следующим формулам:

Корректная детекция состояния эпилептической активности на временном интервале [t1sw;t2sw] достигнута при . При нарушении данного критерия детекцию временного интервала [t1sw; t2sw] полагаем ошибочной.

Рассмотрим пример конкретной реализации разработанного способа. Для регистрации сигналов использован стандартный метод ЭКоГ у крыс. Экспериментальные работы проведены на самцах крыс WAG/Rij в возрасте 9 месяцев. Электроды вживлялись над областью лобной коры (AP=2, L=2), теменной коры (соматосенсорная область, AP -2, L 6) и затылочной коры (AP-5; L 4). Все координаты указаны в мм относительно брегмы. Референтный электрод размещен над поверхностью мозжечка для обеспечения монополярной регистрации от поверхностных электродов. Для регистрации M=3 каналов ЭКоГ использована установка на базе 8-канальной системы PowerLab 4/35 (ADInstruments, Австралия). Длительность T записи ЭКоГ составляла от 1 до 2 часов в полосе частот 0.5-200 Гц, частота дискретизации N = 400 для каждого канала. Дополнительно синхронно с ЭЭГ зарегистрирована видеозапись на основе видео - модуля в программном пакете LabChart 7 и веб-камеры Genius eFace 1325R. По итогам применения заявляемого способа получены характеристики , типичные фрагменты которых приведены на фиг. 4 и 5. На фиг. 4 можно наблюдать артефакт короткого случайного повышения значений характеристики (4). Учет дополнительного ограничения минимальной длительности стадий сна и бодрствования исключает возможность ложной детекции подобных событий. Также на фиг. 5 наблюдается превышение характеристикой (6) пороговых значений. Однако выполнение анализа экстремумов (10), (11) сигнала x(t) позволяет исключить ложное детектирование данного события, как эпилептической активности. Проведена сравнительная статистическая оценка успешности детектирования различных физиологических состояний у животных на основе ручной обработки видеозаписи и ЭКоГ нейрофизиологом и заявляемым методом. Точность автоматической диагностики при оценке длительности временных интервалов физиологических состояний при определении интервалов (i) бодрствования - 96.53%, (ii) сна - 94.70%, (iii) эпилептической активности - 99.34%.

Средняя точность использования способа к сигналам трех электрокортикограмм достигает 96.86% в сравнении с ручной разметкой, выполненной опытным нейрофизиологом с использованием данных видеографии.

Инновационный потенциал предлагаемого способа состоит в том, что он позволяет провести диагностику характерных состояний по записям электрической активности головного мозга (электрокортикограммы, электроэнцефалограммы) без привлечения к анализу дополнительных сигналов (видеографии, окулографии, миографии). Использование изобретения в задачах, связанных с диагностикой основных физиологических состояний животных, позволяет отказаться от регистрации дополнительных сигналов мышечной активности или видеозаписи, необходимых для точного выполнения диагностики.

Похожие патенты RU2751744C1

название год авторы номер документа
СПОСОБ ВЫДЕЛЕНИЯ ХАРАКТЕРНЫХ ФАЗ ПОВЕДЕНИЯ СИСТЕМ ПО ВРЕМЕННЫМ ДАННЫМ 2007
  • Короновский Алексей Александрович
  • Москаленко Ольга Игоревна
  • Попов Павел Вячеславович
  • Храмов Александр Евгеньевич
RU2337610C1
СПОСОБ ВЫДЕЛЕНИЯ ВЕРЕТЕНОПОДОБНЫХ ПАТТЕРНОВ ПО ВРЕМЕННЫМ ДАННЫМ ЭЛЕКТРОЭНЦЕФАЛОГРАММ 2014
  • Храмов Александр Евгеньевич
  • Грубов Вадим Валерьевич
  • Москаленко Ольга Игоревна
  • Короновский Алексей Александрович
  • Ситникова Евгения Юрьевна
RU2565993C1
Способ локализации эпилептического очага в амигдало-гиппокампальном комплексе 2023
  • Александров Михаил Всеволодович
  • Костенко Ирина Александровна
  • Васина София Эдуардовна
RU2814530C1
СПОСОБ ДИАГНОСТИКИ РАЗЛИЧНЫХ СТАДИЙ ЭПИЛЕПТОГЕНЕЗА 2004
  • Корсакова Екатерина Анатольевна
  • Хоршев Сергей Кузьмич
  • Фотеев Валерий Борисович
RU2297791C2
СПОСОБ ОЦЕНКИ ЭФФЕКТИВНОСТИ ПРОТИВОЭПИЛЕПТИЧЕСКОЙ ТЕРАПИИ ЛОКАЛЬНО-ОБУСЛОВЛЕННОЙ ЭПИЛЕПСИИ У ВЗРОСЛЫХ 2009
  • Гребенюк Олег Валерьевич
  • Светлик Михаил Васильевич
  • Алифирова Валентина Михайловна
RU2409316C1
СПОСОБ РАННЕЙ ЭЛЕКТРОЭНЦЕФАЛОГРАФИЧЕСКОЙ ДИАГНОСТИКИ БОЛЕЗНИ ПАРКИНСОНА 2012
  • Обухов Юрий Владимирович
  • Королев Михаил Сергеевич
  • Габова Александра Васильевна
  • Кузнецова Галина Дмитриевна
  • Угрюмов Михаил Вениаминович
RU2484766C1
СПОСОБ УПРАВЛЕНИЯ ТЕКУЩИМ ФУНКЦИОНАЛЬНЫМ СОСТОЯНИЕМ ГОЛОВНОГО МОЗГА 1993
  • Метельский Сергей Тимофеевич
RU2096988C1
СПОСОБ ДИАГНОСТИКИ ПСИХАСТЕНИИ 2015
  • Брохин Леонид Юрьевич
  • Каракулова Юлия Владимировна
  • Кудлаев Сергей Валерьевич
  • Александров Алексей Юрьевич
RU2587961C1
СПОСОБ ДИАГНОСТИКИ И ПРОГНОЗИРОВАНИЯ РАЗВИТИЯ ЭПИЛЕПСИИ У ПАЦИЕНТОВ С ДОКЛИНИЧЕСКОЙ СТАДИЕЙ БОЛЕЗНИ 2001
  • Громов С.А.
  • Хоршев С.К.
  • Корсакова Е.А.
RU2189776C1
УСОВЕРШЕНСТВОВАННОЕ ГАРМОНИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ 2010
  • Экстранд Пер
  • Виллемоес Ларс Фалк
RU2493618C2

Иллюстрации к изобретению RU 2 751 744 C1

Реферат патента 2021 года СПОСОБ АВТОМАТИЧЕСКОГО ВЫДЕЛЕНИЯ ФИЗИОЛОГИЧЕСКИХ СОСТОЯНИЙ МЕЛКИХ ЛАБОРАТОРНЫХ ЖИВОТНЫХ

Изобретение относится к биомедицинским технологиям автоматической обработки сигналов электрической активности головного мозга, а именно к способам диагностики физиологических состояний животных. При этом регистрируют сигнал электрокортикограммы (ЭКоГ) и осуществляют его непрерывное вейвлетное преобразование. Определяют мгновенное распределение энергии вейвлетного спектра по временному масштабу в четырех частотных диапазонах f1 [2,5-4,5]; f2 [5-10]; f3 [10,5-12,5]; f4 [15-18] Гц. Рассчитывают усреднённые характеристики энергий , вейвлетного спектра. По общей длительности временного сигнала ЭКоГ автоматически рассчитывают пороговые значения ε1, ε2, ε1sw, ε2sw усреднённых характеристик. Находят моменты пересечения порогов ε2, ε1 характеристикой , по которым детектируют моменты начала состояний сна и бодрствования. Находят моменты пересечения порогов ε1sw, ε2sw характеристикой , по которым диагностируют моменты начала и окончания состояния эпилептической активности. Обеспечивается расширение функциональных возможностей метода автоматической диагностики физиологических состояний (сна и бодрствования) и патологической активности (эпилептические разряды типа "пик-волна") на основе математического анализа ЭКоГ при ускорении за счет автоматизации процесса диагностики и повышения точности. 1 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 751 744 C1

1. Способ диагностики физиологических состояний животных, включающий регистрацию сигнала электрической активности головного мозга, осуществление его непрерывного вейвлетного преобразования и определение мгновенного распределения энергии вейвлетного спектра по временному масштабу в частотных диапазонах, диагностирование физиологического состояния по пороговым значениям характеристик энергий колебательной активности, отличающийся тем, что в качестве сигнала х(t) регистрируют, по крайней мере, одну электрокортикограмму (ЭКоГ), мгновенное распределение энергии непрерывного вейвлетного преобразования определяют в четырех частотных диапазонах Δƒ1 [2,5; 4,5] Гц, Δƒ2 [5; 10] Гц, Δƒ3 [10,5; 12,5] Гц, Δƒ4 [15; 18] Гц, усредняют значения мгновенных энергий вейвлетного спектра в указанных частотных диапазонах во временном окне 0.5 с, рассчитывая усредненные характеристики энергий 〈εΔƒ1-4〉, 〈εsw〉; по общей длительности временного сигнала ЭКоГ автоматически рассчитывают пороговые значения ε1, ε2, ε1sw, ε2sw усредненных характеристик по формулам:

где α1=1,3, α2=0,45, β1=1,75, β2=1,55, N - общее количество отсчетов в сигнале ЭКоГ, Т - длительность сигнала ЭКоГ в секундах; находят моменты пересечения порогов ε2, ε1 характеристикой 〈εΔƒ4〉, по которым детектируют моменты начала состояний сна и бодрствования; находят моменты пересечения порогов ε1, 2sw характеристикой 〈εsw〉, по которым диагностируют моменты начала t1sw и окончания t2sw состояния эпилептической активности.

2. Способ по п. 1, отличающийся тем, что состояние сна диагностируют на временном интервале Δts, на протяжении которого характеристика 〈εΔƒ4(ts)〉>ε2, состояние бодрствования диагностируют на временных интервалах Δta, на протяжении которого характеристика 〈εΔƒ4(ta)〉<ε2, длительность временных интервалов Δts и Δta ограничена снизу 10 с; состояние эпилептической активности диагностируют на временном интервале [t1sw; t2sw] при выполнении условия (Xmax+Xmin)>6, где характеристики Xmax и Xmin, рассчитываются по формулам:

где max(x(t)) и min(x(t) - максимальные и минимальные экстремумы сигнала ЭКоГ x(t).

Документы, цитированные в отчете о поиске Патент 2021 года RU2751744C1

СПОСОБ ВЫДЕЛЕНИЯ ВЕРЕТЕНОПОДОБНЫХ ПАТТЕРНОВ ПО ВРЕМЕННЫМ ДАННЫМ ЭЛЕКТРОЭНЦЕФАЛОГРАММ 2014
  • Храмов Александр Евгеньевич
  • Грубов Вадим Валерьевич
  • Москаленко Ольга Игоревна
  • Короновский Алексей Александрович
  • Ситникова Евгения Юрьевна
RU2565993C1
СПОСОБ РАННЕЙ ЭЛЕКТРОЭНЦЕФАЛОГРАФИЧЕСКОЙ ДИАГНОСТИКИ БОЛЕЗНИ ПАРКИНСОНА 2012
  • Обухов Юрий Владимирович
  • Королев Михаил Сергеевич
  • Габова Александра Васильевна
  • Кузнецова Галина Дмитриевна
  • Угрюмов Михаил Вениаминович
RU2484766C1
СПОСОБ АНАЛИЗА ЭЛЕКТРОЭНЦЕФАЛОГРАММ 2011
  • Степанов Андрей Борисович
RU2467384C1
CN 109924974 A, 25.06.2019
CN 105677035 A, 15.06.2016
CN 105286860 A, 03.02.2016
CN 101259016 A, 10.09.2008
JP 3156777 B2, 16.04.2001
WO 2016113718 A1, 21.07.2016
US 2016029946 A1, 04.02.2016
СПОСОБ ОБЕСПЕЧЕНИЯ ОПОРЫ ЗА СЧЕТ СИНЕРГИЧЕСКОГО НАПРЯЖЕНИЯ ДЕФОРМАЦИИ АНКЕРНОГО БОЛТА И КРЕПЕЖНОГО КАНАТА 2019
  • Тан, Юнлианг
  • Жу, Каи
  • Ю, Фенгхаи
  • Жао, Вей
  • Гао, Ксюпенг
  • Джиа, Джинглонг
RU2765905C2

RU 2 751 744 C1

Авторы

Руннова Анастасия Евгеньевна

Журавлев Максим Олегович

Уколов Родион Владимирович

Киселев Антон Робертович

Ситникова Евгения Юрьевна

Даты

2021-07-16Публикация

2020-08-18Подача