Изобретение относится к области технической диагностики, в частности к способам контроля герметичности трубопроводов, и может быть использовано для исследования трубопроводов на герметичность и обнаружения мест течи в трубопроводах атомных станций.
Одной из важнейших задач технической диагностики оборудования атомных станций является обнаружение протечек теплоносителя. В настоящее время наибольшее распространение получил ультразвуковой способ контроля внутренних и внешних протечек. Внутренние протечки связаны с нарушением герметичности запорной арматуры, внешние - с истечением теплоносителя через поврежденные внешние стенки конструкции. Существующие подходы основаны на анализе акустической эмиссии работающего оборудования, а также расчета корреляционной функции для пары измерительных каналов. Однако такой подход не предусматривают объективных параметров для количественной оценки величины протечки, а в некоторых случаях решение о наличии протечки принимается на основе субъективной оценки и органолептического восприятия фоновых шумов работающего оборудования.
Известен способ определения координаты течи в трубопроводах (авторское свидетельство СССР на изобретение №1283566), заключающийся в приеме акустических сигналов в двух точках по длине трубопровода, обнаружении течи и последующей корреляционной обработке принятых акустических сигналов, в результате которой определяют разность времен прихода акустических сигналов и координату места течи.
Недостатком данного способа является малая длина контролируемой области трубопровода и невозможность его применения в условиях наличия дискретных помех от технических объектов, окружающих или пересекающих трубопровод.
Наиболее близким аналогом к заявляемому техническому решению является способ контроля герметичности и определения координат места течи в продуктопроводе (патент РФ на изобретение №2181881), заключающийся в приеме акустических сигналов в двух точках по длине продуктопровода, обнаружении течи и последующей корреляционной обработке принятых акустических сигналов, в результате которой определяют разность времени прихода акустических сигналов и координаты места течи, при этом перед корреляционной обработкой принятых акустических сигналов проводят режектирование дискретных составляющих в каждом из сигналов с последующим спектральным анализом последних и из полученных спектров сигналов выделяют долговременные спектральные составляющие, длительностью превышающие 30 секунд, и с амплитудой, превышающей фон на 3-6 дБ, и по данным спектральным составляющим судят о наличии течи.
Недостатком ближайшего аналога является низкая точность измерений и последующей обработки полученных акустических сигналов за счет влияния геометрии трубопровода, а также наличия в трубопроводе опор и перемычек.
Задачей, достигаемой предлагаемым изобретением является определение степени герметичности трубопровода с запорным элементом для анализа возможности его дальнейшей эксплуатации, а также повышение качества и эффективности обнаружения мест течи трубопровода.
Технический результат, достигаемый настоящим изобретением, заключается в снижении продолжительности проведения диагностического обследования и исключении влияния геометрии трубопровода на результат, полученный при диагностическом обследовании.
Сущность изобретения состоит в том, что в способе контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом, заключающемся в регистрации акустических сигналов в двух точках по длине трубопровода и последующей обработке принятых акустических сигналов, предложено регистрацию акустических сигналов осуществлять в широком ультразвуковом диапазоне в двух точках по длине трубопровода, расположенных на трубопроводе до и после запорного элемента, затем зарегистрированные в точке трубопровода до запорного элемента и в точке после запорного элемента ультразвуковые сигналы обрабатывать аналого-цифровым преобразователем и по полученным значениям строить два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье, далее в построенных спектрах сигналов выделять диапазон от 15000 до 90000 Гц и выбирать в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов, затем осуществлять деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды и определять разницу между спектрами сигналов до и после запорного элемента по формуле:
где - амплитуды спектров сигналов до и после запорного элемента соответственно,
i, n - номера дискретных составляющих в анализируемых участках спектра сигнала,
после чего по определенным значениям делать вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от - 100 до 100, или о существенной протечке при разнице между спектрами сигналов более 100.
Также предлагается ультразвуковые сигналы регистрировать с помощью датчиков акустической эмиссии.
Заявленное изобретение поясняется чертежами. На фиг. 1 представлена схема выполнения операций способа, на фиг. 2 - схемы расположения датчиков для контроля запорной арматуры, на фиг. 3 и 4 приведены спектры ультразвуковых сигналов в точках 1 и 2 двух единиц обследуемой запорной арматуры.
Предлагаемый способ осуществляется следующим образом.
На трубопровод до и после герметизирующего элемента устанавливают датчики для регистрации ультразвуковых сигналов, например, датчики акустической эмиссии GT400. Точки для установки датчиков выбирают либо в верхней части сечения трубопровода, либо в боковой его части. Точки для установки датчиков в нижней части сечения трубопровода не выбирают из-за возможных искажений акустического сигнала вследствие возможного наличия различного рода отложений.
Затем осуществляют регистрацию акустических сигналов в широком ультразвуковом диапазоне. Далее зарегистрированные ультразвуковые сигналы обрабатывают аналого-цифровым преобразователем и по полученным значениям строят два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье.
Затем в построенных спектрах сигналов выделяют диапазон от 15000 до 90000 Гц, т.к. на более низких частотах проявляются собственные колебания трубопровода, а на более высоких - ложные пики из-за особенностей работы акустического датчика.
Далее выбирают в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов и осуществляют деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды.
Разницу между спектрами сигналов до и после запорного элемента определяют по формуле:
где - амплитуды спектров сигналов до и после запорного элемента соответственно,
i, n - номера дискретных составляющих в анализируемых участках спектра сигнала.
По полученному значению делают вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от -100 до 100, или о существенной протечке при разнице между спектрами сигналов более 100.
Описанный способ был использован на Нововоронежской АЭС при обследовании арматуры системы питательной воды на байпасе и на линии рециркуляции.
В соответствии с представленной на фиг. 1 схемой реализации заявленного способа, проводили измерение акустических сигналов до (п. 1.1) и после (п. 1.2) установленного запорного элемента. На фиг. 2 приведена схема расположения точек для выполнения измерений. Цифрами отмечены номера точек измерений: 1 и 2. Стрелкой обозначено направление движения рабочей среды.
Проводили анализ сигналов, полученных при помощи датчика акустического GT400. Регистрацию выполняли в двух точках: в точке 1 до и в точке 2 после запорного элемента 3.
Обследуемая запорная арматура (запорный элемент 3) предназначалась для перекрытия потока воды под давлением 8 МПа и при температуре 160°С.
После измерения акустических сигналов в точках 1 и 2 проводили оцифровку полученных сигналов, зарегистрированных до (п. 2.1) и после (п. 2.2) запорного элемента 3. После чего проводили расчет (пп. 3.1 и 3.2 на фиг. 1) спектров оцифрованных сигналов, зарегистрированных до и после установленного запорного элемента 3. При расчете спектра тока задавали размер быстрого преобразования Фурье 1684, весовую функцию Hann и усреднение 75%.
После этого проводили выделение диапазона от 20000 до 80000 Гц в спектрах оцифрованных сигналов (п. 4.1 и 4.2 фиг. 1), зарегистрированных в точках 1 и 2 до и после запорного элемента 3. В выделенном диапазоне обоих спектров оцифрованных сигналов была выбрана наибольшая амплитуда.
Затем было осуществлено деление на наибольшую амплитуду спектров оцифрованных сигналов, зарегистрированных до (п. 6.1) и после (п. 6.2) запорного элемента 3, а далее - вычитание амплитуд нормализованных спектров оцифрованных сигналов, зарегистрированных до и после запорного элемента 3. Далее осуществляли суммирование разностей амплитуд нормализованных спектров оцифрованных сигналов, зарегистрированных до и после запорного элемента 3.
Разницу между спектрами сигналов до и после запорного элемента 3 определяли по формуле:
где - амплитуды спектров сигналов до и после запорного элемента соответственно,
i, n - номера дискретных составляющих в анализируемых участках спектра сигнала.
По полученным спектрам производили идентификацию состояния запорного элемента по суммарной разности амплитуд при условии: различие менее -100 трактуется как «отсутствие протечки», параметр в диапазоне от -100 до 100 интерпретируется как «возможна незначительная протечка», а результат более 100 означает «существенная протечка».
Спектры ультразвуковых сигналов в точках 1 и 2 двух единиц обследуемой запорной арматуры приведены на фиг. 3 и 4. При этом на фиг. 3 представлено наложение нормированных спектров до и после запорного элемента с протечками, а на фиг. 4 - наложение спектров до и после запорного элемента без протечек. В первом случае различие спектров составило S=759, а во втором случае S=-680. Таким образом, был сделан вывод о существенной протечке в запорном органе первой единицы арматуры и отсутствии протечки второй единицы арматуры.
Предлагаемый способ может быть использован на АЭС, а также для контроля герметичности трубопроводов на предприятиях и объектах техники теплоэнергетики и других отраслей промышленности.
Использование предлагаемого способа позволяет определить степень герметичности трубопровода с запорным элементом для анализа возможности его дальнейшей эксплуатации, а также повысить качество и эффективность обнаружения мест течи трубопровода.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения присосов воздуха в вакуумной системе паротурбинных установок | 2023 |
|
RU2800565C1 |
МНОГОПРОФИЛЬНЫЙ АКУСТИЧЕСКИЙ ТЕЧЕИСКАТЕЛЬ И СПОСОБ ЕГО НАСТРОЙКИ | 1992 |
|
RU2042123C1 |
УСТРОЙСТВО КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ЗАПОРНОЙ АРМАТУРЫ ТРУБОПРОВОДА | 2013 |
|
RU2534428C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ И ОПРЕДЕЛЕНИЯ КООРДИНАТЫ МЕСТА ТЕЧИ В ПРОДУКТОПРОВОДЕ | 1998 |
|
RU2181881C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ТЕЧИ | 1991 |
|
SU1833684A3 |
Способ обнаружения нештатной ситуации на многониточном магистральном трубопроводе | 2019 |
|
RU2700491C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ И ОПРЕДЕЛЕНИЯ КООРДИНАТЫ МЕСТА ТЕЧИ В ПРОДУКТОПРОВОДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2628672C1 |
СПОСОБ ЭКСТРЕННОЙ ДИАГНОСТИКИ ТРУБОПРОВОДОВ ВЫСОКОГО ДАВЛЕНИЯ | 2010 |
|
RU2442072C1 |
Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем | 2021 |
|
RU2768135C1 |
Способ определения линейной координаты места возникновения течи в трубопроводе | 2022 |
|
RU2789793C1 |
Изобретение относится к области технической диагностики, в частности к способам контроля герметичности трубопроводов, и может быть использовано для исследования трубопроводов на герметичность и обнаружения мест течи в трубопроводах атомных станций. Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом заключается в регистрации акустических сигналов в двух точках по длине трубопровода и последующей обработке принятых акустических сигналов. Регистрацию акустических сигналов осуществляют в широком ультразвуковом диапазоне в двух точках по длине трубопровода, расположенных на трубопроводе до и после запорного элемента. Зарегистрированные ультразвуковые сигналы обрабатывают аналого-цифровым преобразователем и по полученным значениям строят два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье. В построенных спектрах сигналов выделяют диапазон от 15000 до 90000 Гц и выбирают в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов. Затем осуществляют деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды и определяют разницу между спектрами сигналов до и после запорного элемента по предложенной формуле. По определенным значениям делают вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от -100 до 100. Вывод о существенной протечке делают при разнице между спектрами сигналов более 100. Также предлагается ультразвуковые сигналы регистрировать с помощью датчиков акустической эмиссии. Технический результат заключается в снижении продолжительности проведения диагностического обследования и исключении влияния геометрии трубопровода на результат, полученный при диагностическом обследовании. 1 з.п. ф-лы, 4 ил.
1. Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом, заключающийся в регистрации акустических сигналов в двух точках по длине трубопровода и последующей обработке принятых акустических сигналов, отличающийся тем, что регистрацию акустических сигналов осуществляют в широком ультразвуковом диапазоне в двух точках по длине трубопровода, расположенных на трубопроводе до и после запорного элемента, затем зарегистрированные в точке трубопровода до запорного элемента и в точке после запорного элемента ультразвуковые сигналы обрабатывают аналого-цифровым преобразователем и по полученным значениям строят два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье, далее в построенных спектрах сигналов выделяют диапазон от 15000 до 90000 Гц и выбирают в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов, затем осуществляют деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды и определяют разницу между спектрами сигналов до и после запорного элемента по формуле:
где - амплитуды спектров сигналов до и после запорного элемента соответственно,
i, n - номера дискретных составляющих в анализируемых участках спектра сигнала,
после чего по определенным значениям делают вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от -100 до 100, или о существенной протечке при разнице между спектрами сигналов более 100.
2. Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом по п. 1, отличающийся тем, что ультразвуковые сигналы регистрируют с помощью датчиков акустической эмиссии.
US 6134949 A, 24.10.2000 | |||
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ И ОПРЕДЕЛЕНИЯ КООРДИНАТЫ МЕСТА ТЕЧИ В ПРОДУКТОПРОВОДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2628672C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ И ОПРЕДЕЛЕНИЯ КООРДИНАТЫ МЕСТА ТЕЧИ В ПРОДУКТОПРОВОДЕ | 1998 |
|
RU2181881C2 |
Способ определения координаты течи в трубопроводах | 1985 |
|
SU1283566A1 |
Ван-туз для трубопроводов водяного отопления | 1928 |
|
SU15392A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОРСОВАННОЙ ТКАНИ | 1928 |
|
SU20569A1 |
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОПРИВОДНОГО ОБОРУДОВАНИЯ | 2013 |
|
RU2552854C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ТЕЧИ | 1991 |
|
SU1833684A3 |
Авторы
Даты
2021-09-06—Публикация
2020-09-01—Подача