ЭЛЕМЕНТАРНАЯ ЯЧЕЙКА ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА И АККУМУЛЯТОР НА ЕЕ ОСНОВЕ Российский патент 2021 года по МПК H01M4/13 H01M10/525 

Описание патента на изобретение RU2759843C1

Группа изобретений относится к альтернативной энергетике, в частности к материалам литий-ионных аккумуляторов нового поколения с высокой удельной энергией.

Разработка портативных химических источников тока, или аккумуляторов с высокой удельной энергией и низким весом, актуальна для автомобильной, аэрокосмической, нефтегазовой, оборонной и прочих отраслей. Наибольшие перспективы связаны с улучшением литий-ионных аккумуляторов, недостатками которых являются относительно невысокая емкость, большой вес, низкая скорость заряда, нарушение работоспособности при полном разряде, а также при перезаряде.

Основными функциональными частями элементарной ячейки аккумулятора являются катод, анод, электролит и изолятор, пропускающий ионы в заданном направлении. В качестве катода применяют литированные оксиды кобальта, никеля и марганца. Улучшению характеристик катодного материала может способствовать применение наноматериалов с более равномерным их распределением по объему катода. Анодным материалом служит графит и смесь графитов или графитированных материалов. Недостатком углеродных анодов является их низкая емкость (372 мА·ч/г), в связи с чем вместо графита предлагается использовать кремний с высокой теоретической удельной емкостью (4200 мА·ч/г). Однако при циклировании кристаллический кремний подвержен быстрому разрушению. Переход к тонкопленочным кремниевым анодам позволяет избежать этого недостатка, но появляется другая сложность. Тонкопленочные кремниевые аноды имеют относительно большую потерю емкости в процессе заряда-разряда по причине нарушения контакта с токосъемником. Однако, стабильность этого процесса существенно увеличивается с уменьшением толщины кремниевой пленки. Тонкопленочные аноды на основе SnО2 обладают довольно высокой емкостью (~700 мА·ч/г) и хорошей стабильностью в процессе заряда-разряда. Однако при первой катодной поляризации значительное количество электричества затрачивается на необратимую емкость.

В качестве электролитов применяют жидкий раствор LiPF6 в смеси этиленкарбоната с диметилкарбонатом, твердый электролит Li3,6Si0,64. Для тонкопленочных аккумуляторов в качестве электролита предлагается использовать LiPON.

Сепаратор разделяет катод и анод и служит для предотвращения короткого замыкания. Ниже температуры 130°C можно использовать полиэтиленовый или полипропиленовый сепаратор с нанесенными на него композитом из полимерного связующего и наночастицами оксида церия.

Известные способы изготовления литий-ионных аккумуляторов преимущественно направлены на оптимизацию способов получения и улучшение эксплуатационных характеристик отдельных элементов аккумулятора [1-3]. Например, использование в качестве анодов композиционных смесей из микроструктурных волокон, 2D/3D структурных и нанотрубчатых материалов из Si и C позволяет максимально исключить объемное расширение аккумулятора и нарушение контакта анода с токосъемником и электролитом, однако при более сложном изготовлении. Благодаря этому усовершенствованию улучшаются такие характеристики как удельная емкость и скорость заряда. Также объемное расширение аккумулятора снижается при использовании в качестве анодов композиций Si-C-SiO2, но появление кислорода в аноде приводит к образованию на межфазной границе анод-электролит плохо проводящего силиката лития.

Наиболее близкой к заявленной является элементарная ячейка литий-ионного аккумулятора [4], имеющая в своем составе силиценовый нанокомпозитный анод, жидкий электролит, катод и изолятор. Кремниево-углеродный нанокомпозитный анод элементарной ячейки представлен листами аморфного, поликристаллического или кристаллического кремния толщиной от 3 до 20 мкм, при этом между листами кремния размещают наночастицы кремния размером 50-300 нм или углеродные нанотрубки. Такой анод обладает удельной емкостью 3500 мА·ч/г, что в 10 раз выше емкости применяемых в настоящее время анодов. Его использование демпфирует механическое расширение при интеркалляции лития, что практически исключает расслаивание, растрескивание анода, а также рост дендритов лития на границе анод-электролит. В результате этого, срок службы аккумулятора с данным анодом повышается до 5000 циклов разряд-заряд с уменьшением потери емкости до 15% от максимально достижимой.

Недостатками известной элементарной ячейки являются относительная сложность синтеза материала анода путем парофазного осаждения при высокой температуре в условиях глубокого вакуума, ограниченный диапазон рабочих температур аккумулятора (от -20 до 50 °C), относительно быстрое снижение емкости и низкий срок службы при высокой стоимости аккумулятора.

Задачами изобретения является повышение удельной энергоемкости и срока службы литий-ионного аккумулятора при сокращении затрат на производство.

Технический результат заключается в увеличении числа циклов разряда/заряда аккумулятора до 5000 и выше без снижения удельной емкости анода ниже 3500 мА·ч/г в диапазоне рабочих температур (от -50 до 100°С), уменьшении размеров и массы литий-ионного аккумулятора, исключении объемного расширения анодов элементарных ячеек и литий-ионного аккумулятора в целом.

Для этого предлагается элементарная ячейка литий-ионного аккумулятора в составе токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов - катионпроводящие по литию материалы. Основной конструкционной особенностью ячейки является использование в качестве анода многослойной графит-силиценовой композиции в соотношении, когда на 5 моноатомных слоев силицена приходится 4-8 моноатомных графеновых слоев подложки. Предпочтительно, графитовая подложка выполнена из 8 слоев и с обеих сторон покрыта силиценом.

При таком исполнении конструкции анода между соседними слоями силицена, а также между крайними слоями силицена и графеновой подложкой могут быть выполнены зазоры регулируемого размера для их заполнения литием при заряде аккумулятора. Оптимальный размер зазора составляет 0,24-0,75 нм. Благодаря этому при сохранении размеров элементарной ячейки одновременно уменьшается плотность массы анода и повышается емкость анода по литию.

В свою очередь из параллельно соединенных заявленных элементарных ячеек, размещенных в изолированном от внешней среды атмосферы корпусе, может быть изготовлен литий-ионный аккумулятор:

- при сохранении емкости аккумулятора на уровне емкости известных конструкций, но с уменьшением его массы и размеров, и, как следствие, с уменьшением удельной емкости;

- при сохранении размера аккумулятора на уровне размеров известных конструкций, но с увеличением его удельной емкости и уменьшением массы;

- при одновременном увеличении удельной емкости, уменьшении массы и размеров в сравнении с известными конструкциями.

Предпочтительно, элементарные ячейки аккумулятора соединяют зеркально относительно плоскости, параллельной плоскости силицена.

Как было отмечено выше, одним из недостатков известных литий-тонных аккумуляторов является объемное расширение анодов, которое, как правило, является результатом пересыщения анода литием или, другими словами, перезаряда аккумулятора. Наличие зазоров между силиценовыми слоями в аноде заявленной элементарной ячейки позволяет одновременно увеличить число циклов разряда/заряда аккумулятора, исключить объемное расширение анода элементарной ячейки, элементарной ячейки и собранного из таких элементарных ячеек литий-ионного аккумулятора даже в случае кратного перезаряда аккумулятора.

Из вышенаписанного следует, что использование заявленных элементарных ячеек при изготовлении литий-ионного аккумулятора позволяет уменьшить массу и размеры аккумулятора, сократить расход материалов на производство аккумулятора при увеличении его удельной емкости.

Несмотря на особенности конструкции анода при изготовлении элементарной ячейки литий-ионного аккумулятора и аккумулятора в целом могут быть использованы известные составы твердых электролитов и прочие известные конструкционные материалы, что обеспечивает сохранение рабочего диапазона температур аккумулятора от -50 до 100°С.

Сущность заявляемого технического решения поясняется следующими материалами, где изображено:

- в Таблице - результаты модельных и экспериментальных испытаний литий-ионных аккумуляторов с использованием разных анодов на основе кремния;

- на фиг. 1 - принципиальная схема элементарной ячейки литий-ионного аккумулятора с силиценовым анодом;

- на фиг. 2 - схема расположения слоев в многослойном силиценовом аноде.

Для понимания сущности группы изобретений на Фиг. 1 приведен вариант принципиальной схемы элементарной ячейки для литий-ионного аккумулятора с условным изображением внешней электрической цепи. Анод 1 содержит токосъемник 2 (тонкая металлическая пленка, например, медь), тонкую пленку кремния 3 и два листа силицена 4, один из которых расположен на графитовой подложке 5. Ввиду близких значений плотности графита и кремния, основным фактором, влияющим на удельную емкость электрода, будет существенно более высокая адсорбционная емкость силицена по литию. Поэтому графитовая подложка должна быть по возможности более тонкой. Верхний силиценовый лист не имеет графитовой подложки, что позволяет использовать обе стороны этого листа при работе литий-ионного аккумулятора.

Литий-ионный аккумулятор может быть изготовлен путем соединения таких элементарных ячеек. Более выгодно соединять зеркальные элементы (относительно плоскости, параллельной плоскости силицена). В этом случае, в принципе, для двух листов силицена (без поддержки) каждая из поверхностей может быть использована для адсорбции лития.

Силиценовые листы могут быть разделены зазором с оптимальным размером 0.24-0.75 нм, позволяющим наиболее эффективно перемещаться ионам лития в силиценовом канале. Слева листы силицена опираются на пленку осажденного на металлическую фольгу кремния. Катод 6 находится в прямом контакте только с твердым электролитом 7. При заряде аккумулятора ионы лития из твердого электролита перемещаются в зазоры между слоями силицена, равномерно заполняя их, а при разряде - обратно в твердый электролит и частично - к катоду.

Эффективность работы описываемого анода элементарной ячейки может быть достигнута в случае использования современных химически устойчивых материалов катода, изолятора и электролита, обеспечивающих высокую электрическую и тепловую проводимость. Катод может быть изготовлен из любых катионпроводящих материалов, преимущественно из материалов, обеспечивающих высокую емкость по литию, например, из LiCoO2, цирконаты лития, LiAlO2, Li3PO4, LiNbO3, LiTaO3. В качестве тонкопленочных твердых электролитов могут быть использованы известные электролиты, преимущественно, обеспечивающие максимальную стабильность, электропроводность и экологичность [1-3]:

- антиперовскиты Li3OCl, Li3OBr и Li3OCl0.5Br0.5 и другие;

- электролиты с гранатоподобной структурой: Li5La3Ta2O12, Li5La3Nb2O12 и другие;

- сульфидные электролиты Li10GeP2S12, Li2Sn2S5 и другие.

Сущность заявляемой группы изобретений поясняется следующими примерами.

В общем случае заявляемые элементарную ячейку и литий-ионный аккумулятор изготавливают следующим образом в сухом боксе с инертной атмосферой.

В качестве токосъемника 2 анода 1 используют металлическую фольгу с высокой электропроводностью, в частности, медную фольгу толщиной не менее 20 нм и шириной не менее 2 мкм. На медную фольгу наносят пленку связующего вещества (Ti-W, Ta, TiN и др) толщиной не более 100 нм, после чего электролитически осаждают наноструктурированный кремний. В качестве катода используют напыленный на токосъемник катода 6 слой из LiCoO2, Li2ZrO3, LiAlO2, Li3PO4, LiNbO3, или LiTaO3 толщиной не менее 100 нм, на который помещают изолятор 8 с порами (9 - молекулярное сито) в месте контакта с катодом 6, например, органический полимер поли-1,3,5-триметил-1,3,5-тривинилциклотрисилоксан толщиной не менее 5 нм. Поры, получаемые с помощью ионной бомбардировки, в изоляторе между твердым электролитом и катодом позволяют ионам лития поступать из электролита в катод в режиме разряда.

Между катодом 6 и токосъемником 2 анода 1 размещают многослойную графит-силиценовую композицию, которая выполняет роль наноструктурированного анода литий-ионного аккумулятора. При этом соотношение слоев в композиции следующее: 5 моноатомных слоев силицена приходятся на графитовую подложку из 4-8 (в зависимости от конструкции) моноатомных слоев графена. Каждый силиценовый лист имеет размер 4×2 мкм, такие же горизонтальные размеры имеет графитовая подложка, зазор между силиценовыми листами составляет 0.25-0.75 нм. К изолятору прикладывается пленка твердого электролита толщиной 2 мкм.

Листы силицена приводят в контакт с наноструктурированным кремнием, нанесенным на металлическую фольгу-токосъемника, например, при помощи электрического разряда.

Литий-ионный аккумулятор изготавливают путем параллельного соединения нескольких таких элементарных ячеек и последующим их размещением в изолированном от внешней атмосферы корпусе аккумулятора.

Экспериментальные испытания работы аккумулятора проводят путем многократного повтора циклов разряда/заряда с использованием гальваностата/потенциостата 10, например, AutoLab 302N. В ходе испытаний определяется емкость аккумулятора и время его заряда до полной емкости на каждом цикле разряда/заряда.

Путем молекулярно-динамического моделирования заполнения литием зазоров между слоями силицена размерами 4.8×4.1 нм при напряженности электрического поля 103 В/м были определены теоретическая удельная емкость литий-ионного аккумулятора, оптимальная толщина зазора между слоями силицена и коэффициент диффузии лития. Показано, что заполнение зазора начинается уже при минимальном типичном зазоре в двухслойном силицене (0.24 нм), а зазор 0.75 нм уже интенсивно заполняться литием. Увеличение зазора приводит к интенсификации нерациональных направлений движения лития, ориентированных преимущественно поперек электрического поля. Чтобы гарантированно получить емкость электрода не менее 3500 мА·ч/г, активный элемент анода должен содержать не менее 5 слоев силицена, один из которых находится на четырехслойном графите. Наиболее оптимальная конструкция заявленной элементарной ячейки литий-ионного аккумулятора показана на ФИГ. 2, где графитовая подложка из 8 слоев с обеих сторон покрыта силиценом. Коэффициент диффузии лития при зарядке для такой ячейки [(1.2-1.7)×10-5 см2 / с] в 1.5-5.5 раз выше, чем для известных элементарных ячеек, что прямо указывает на более высокую скорость заряда аккумулятора.

В Таблице приведены результаты модельных и экспериментальных испытаний литий-ионных аккумуляторов с использованием разных анодов на основе кремния. Из расчетов и приведенных в Таблице результатов видно, что литий-ионный аккумулятор, изготовленный из заявленных элементарных ячеек, обладает большей удельной емкостью и скоростью заряда, большим количеством циклов заряда/разряда без какого-либо объемного расширения.

Источники информации

[1] Electrochemical Energy Reviews, 2019, Vol. 2, pp. 574-605 (Твердотельные электролиты для литий-ионных аккумуляторов: основы, проблемы и перспективы // Обзоры электрохимической энергетики. 2019. Т. 2. С. 574-605).

[2] ACS Energy Letters, 2019, Vol. 4, pp. 2444-2451 (Твердотельные химические технологии, устойчивые к использованию в высокоэнергетических катодах для литий-ионных батарей // ASC Письма об энергетике. 2019. Т. 4. С. 2444-2451).

[3] Патент на полезную модель RU 161876 U1, приор. 09.12.2015, опубл. 10.05.2016, МПК H01M 10/0525 (2010.01), H01M 4/134 (2010.01), H01M 4/139 (2010.01).

[4] Заявка US 2015/0364754 A1, по заявке 14/545,573 от 21.05.2015, приор. от 22.05.2014, опубл. 17.12.2015, МПК H01M 4/36 (2006.01), H01M 4/33 (2006.01), H01M 4/38 (2006.01), C30B 29/06 (2006.01), H01M 4/1395, H01M 4/04, C30B 25/02, H01M 4/34, H01M 4/587.

Похожие патенты RU2759843C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО АНОДА ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ НА ОСНОВЕ ПЛЕНОК НАНОСТРУКТУРИРОВАННОГО КРЕМНИЯ, ПОКРЫТОГО ДВУОКИСЬЮ КРЕМНИЯ 2011
  • Рудый Александр Степанович
  • Бердников Аркадий Евгеньевич
  • Мироненко Александр Александрович
  • Гусев Валерий Николаевич
  • Геращенко Виктор Николаевич
  • Метлицкая Алена Владимировна
  • Скундин Александр Мордухаевич
  • Кулова Татьяна Львовна
RU2474011C1
ЛИТИЕВЫЙ АККУМУЛЯТОР 2012
  • Прохазка Ян-Младший
  • Поливка Ярослав
  • Постлер Иржи
RU2594010C2
ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРОД ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА 2004
  • Кулова Т.Л.
  • Нижниковский Е.А.
  • Скундин А.М.
  • Ганшин В.М.
  • Чебышев А.В.
  • Фесенко А.В.
  • Щербаков В.А.
  • Власов А.А.
  • Ковальчук А.В.
RU2259616C1
ДОБАВКА ДЛЯ ЛИТИЙ-ИОННЫХ ПЕРЕЗАРЯЖАЕМЫХ БАТАРЕЙ 2011
  • Кувар Фазлил
  • Абдельсалам Мамдух Эльсаид
  • Лэйн Майкл Джонатан
RU2533650C2
СПОСОБ ИЗГОТОВЛЕНИЯ ОТРИЦАТЕЛЬНОГО ЭЛЕКТРОДА ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА 2017
  • Трунин Евгений Борисович
RU2662454C1
ТВЕРДОТЕЛЬНЫЙ ТОНКОПЛЕНОЧНЫЙ ГИБРИДНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ ИСТОЧНИК ТОКА 2018
  • Мещеряков Владимир Игоревич
  • Руссау Арну
  • Манахов Антон Михайлович
  • Погорелов Николай Анатольевич
  • Колесникова Елена Викторовна
  • Чугунов Владимир Александрович
RU2709487C1
СПОСОБ ХИМИЧЕСКОЙ ОБРАБОТКИ АНОДОВ НА ОСНОВЕ НЕГРАФИТИЗИРУЕМОГО УГЛЕРОДА И ХИМИЧЕСКИ ОБРАБОТАННЫЕ ТАКИМ СПОСОБОМ АНОДЫ НА ОСНОВЕ НЕГРАФИТИЗИРУЕМОГО УГЛЕРОДА ДЛЯ КАЛИЙ-ИОННЫХ АККУМУЛЯТОРОВ 2021
  • Абакумов Артем Михайлович
  • Абрамова Елена Николаевна
  • Рупасов Дмитрий Павлович
RU2762737C1
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ МНОГОСЛОЙНОГО СИЛИЦЕНА, ИНТЕРКАЛИРОВАННОГО ЕВРОПИЕМ 2018
  • Аверьянов Дмитрий Валерьевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
  • Королева Анастасия Федоровна
RU2663041C1
СПОСОБ ПРИГОТОВЛЕНИЯ И СБОРКИ АККУМУЛЯТОРНОЙ ЯЧЕЙКИ, СОСТОЯЩЕЙ ИЗ ЦИАНОКОМПЛЕКСОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ В КАЧЕСТВЕ КАТОДА, НЕГРАФИТИЗИРУЕМОГО УГЛЕРОДА В КАЧЕСТВЕ АНОДА И БЕЗВОДНОГО ЭЛЕКТРОЛИТА, ДЛЯ КАЛИЙ-ИОННЫХ АККУМУЛЯТОРОВ 2019
  • Абакумов Артем Михайлович
  • Каторова Наталья Сергеевна
  • Рупасов Дмитрий Павлович
  • Абрамова Елена Николаевна
  • Морозова Полина Александровна
  • Стивенсон Кит
RU2728286C1
ЛИТИЙ-ВОЗДУШНЫЙ АККУМУЛЯТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Семененко Дмитрий Александрович
  • Плешаков Егор Андреевич
  • Белова Алина Игоревна
  • Иткис Даниил Михайлович
RU2578196C2

Иллюстрации к изобретению RU 2 759 843 C1

Реферат патента 2021 года ЭЛЕМЕНТАРНАЯ ЯЧЕЙКА ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА И АККУМУЛЯТОР НА ЕЕ ОСНОВЕ

Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по литию материалы. В качестве анода используют многослойную графит-силиценовую композицию при соотношении 5 моноатомных слоев силицена на графитовую подложку из 4-8 моноатомных слоев графена. Силиценовые листы разделены зазором 0,24-0,75 нм. Графитовая подложка предпочтительно выполнена из 8 слоев и с обеих сторон покрыта силиценом. Из параллельно соединенных элементарных ячеек, размещенных в изолированном от внешней среды атмосферы корпусе, изготавливают литий-ионный аккумулятор. Ячейки могут быть соединены зеркально относительно плоскости, параллельной плоскости силицена. Технический результат заключается в увеличении числа циклов разряда/заряда аккумулятора до 5000 и выше без снижения удельной емкости анода ниже 3500 мА·ч/г в диапазоне рабочих температур (от -50 до 100°С), уменьшении размеров и массы литий-ионного аккумулятора, исключении объемного расширения анодов элементарных ячеек и литий-ионного аккумулятора в целом. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 759 843 C1

1. Элементарная ячейка литий-ионного аккумулятора, состоящая из токосъемников, анода, катода, электролита и изолятора, при этом в качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по литию материалы, отличающаяся тем, что в качестве анода используют многослойную графит-силиценовую композицию при соотношении 5 моноатомных слоев силицена на графитовую подложку из 4-8 моноатомных слоев графена.

2. Ячейка аккумулятора по п.1, отличающаяся тем, что силиценовые листы разделены зазором с размером 0,24-0,75 нм.

3. Ячейка аккумулятора по п.1, отличающаяся тем, что графитовая подложка выполнена из 8 слоев и с обеих сторон покрыта силиценом.

4. Литий-ионный аккумулятор, состоящий из параллельно соединенных ячеек, выполненных по п.1 и размещенных в изолированном от внешней атмосферы корпусе.

5. Аккумулятор по п.4, отличающийся тем, что элементарные ячейки в нем соединяют зеркально относительно плоскости, параллельной плоскости силицена.

Документы, цитированные в отчете о поиске Патент 2021 года RU2759843C1

US 2015364754 A1, 17.12.2015
0
SU161876A1
АНОДЫ ДЛЯ ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА, СОДЕРЖАЩИЕ ЧАСТИЦЫ ГРАФЕНОВОГО УГЛЕРОДА 2014
  • Ваньер Ноэль Р.
  • Эсэй Дэвид Б.
  • Олсон Курт Г.
  • Ракиевич Эдвард Ф.
  • Ван Дунхай
  • И Жань
RU2634689C2
СТАЛЬНОЙ ЭЛЕМЕНТ, СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2006
  • Танигути Такао
  • Сираи Хисао
  • Охбаяси Кодзи
  • Окада Казуаки
  • Канисава Хидео
  • Козава Судзи
RU2374335C1

RU 2 759 843 C1

Авторы

Галашев Александр Евгеньевич

Рахманова Оксана Рашитовна

Иваничкина Ксения Андреевна

Суздальцев Андрей Викторович

Зайков Юрий Павлович

Даты

2021-11-18Публикация

2020-05-22Подача