Устройство относится к области энергетики, конкретно к турбинным установкам.
Известные паротурбинные установки по циклу Ренкина, например, турбины с ухудшенным вакуумом или противодавленческие турбины, отработавший пар которых имеет перегрев по отношению к температуре насыщения (см. Теплотехнический справочник T. 1, М., Энергия, 1975 г. стр. 339. табл. 7.3).
Недостаток этих турбоустановок в том, что они имеют перегрев пара при давлении 0,5÷0,81 МПа на 40-60°С, который полезно не используется.
Известны турбинные установки, которые состоят из паровой турбины, конденсатора пара с конденсатным или конденсатно-питательным насосом, паропроводом от турбины к конденсатору и рекуператора, поверхность нагрева которого образована трубами с промежуточными перегородками и коллектором подвода и отвода конденсата. В этих установках тепло рабочего тела после турбины поступает в рекуператор для подогрева сжатого воздуха на входе в камеру сгорания (см. «Теплообменные аппараты технологических подсистем турбоустановок», М., Инновационное машиностроение, 2016 г. с. 352-353). Недостаток этих аппаратов - большие габариты, следствием которых является выделение рекуператора в качестве отдельно расположенного теплообменника с поперечным обтеканием труб, а также невозможность обеспечить противоток в греющей и нагреваемой среде и большое гидравлическое сопротивление по греющей среде из-за многократных поворотов потока в стремлении организовать перекрестно - противоточное движение сред.
Преодоление этих недостатков возможно, если в качестве поверхности теплообмена рекуператора использовать продольно-оребренные трубы, когда отсутствует потеря давления на повороты потока при чистом противотоке сред, а конфигурация поверхности теплообмена позволяет вписать ее в выхлопной трубопровод после турбины без установки отдельного теплообменника. Поставленная задача решается тем, что в энергетической установке, состоящей из паровой турбины, рекуператора, конденсатора пара с конденсатно-питательным насосом, паропровода от турбины к конденсатору, поверхности теплообмена рекуператора с промежуточными перегородками и коллекторами подвода и отвода конденсата к ней, поверхность теплообмена рекуператора набрана из продольно-оребренных труб с концами, свободными от оребрения, продольно-оребренные трубы зафиксированы промежуточными перегородками в шестигранном трубном пучке из n рядов, количество труб в которых равно Σ6n+1, свободные концы продольно-оребренных труб закреплены сваркой или вальцовкой в трубные доски с выпуклыми крышками и конденсатной трубой, конденсатные трубы присоединены сваркой к коллекторам подвода и отвода конденсата поверхности теплообмена, а поверхность теплообмена размещена внутри паропровода от турбины к конденсатору с конденсатным насосом.
Устройство приведено на рис. 1. Оно состоит из турбины 1, паропровода 2 от турбины к конденсатору с конденсатным насосом 5, поверхность теплообмена рекуператора 3 размещена в паропроводе 2, она имеет коллекторы 6 и 7 подвода и отвода конденсата и промежуточные перегородки 4, фиксирующее положение шестигранных трубных пучков 9 (см. рисунок 1 б, в), число труб в этих пучках равно 6n+1, где n - число рядов труб. Продольно-оребренные трубы 11 имеют концы, свободные от оребрения, которые вварены или завальцованы в трубные доски с выпуклыми крышками 10 и конденсатными трубами 8 (см. рис. 1, г).
Вся поверхность теплообмена рекуператора 3 с продольно-оребренными трубами 11 и промежуточными перегородками 4 размещена в паропроводе 2 от турбины 1 к конденсатору с конденсатно-питательным насосом 5.
Устройство работает следующим образом. Отработавший перегретый пар после турбины 1 поступает в паропровод 2 и далее в межребренное пространство продольно-оребренных труб 11 рекуператора, свободные от оребрения концы которых заделаны в трубные доски с выпуклыми крышками 10. Продольно-оребренные трубы собраны в шестигранные трубные пучки 9, положение которых зафиксировано промежуточными перегородками 4 так, что перегретый пар свободно протекает сквозь перегородку по межреберному пространству продольно-оребренных труб 11, передавая тепло перегрева поверхности этой трубы и далее поступает в конденсатор с конденсатно-питательным насосом 5, где конденсируется. Конденсат поступает в коллектор подвода 6 и через конденсатные трубы 8, трубные доски с выпуклыми крышками 10 и свободные от оребрения концы подается внутрь продольно-оребренных труб 11, где в процессе противотока отбирает тепло перегрева от поверхности продольно-оребренной трубы.
Нагретый конденсат из продольно-оребренных труб 11 через трубные доски 10 с выпуклыми крышками и конденсатные трубы 8 подается в коллектор отвода конденсата 7 и далее в схему энергетической установки. Таким образом, тепло перегрева уменьшает количество тепла, необходимого для выработки заданной мощности энергетической установки.
Противоточное течение теплоносителей - наиболее эффективная схема теплопередачи, а течение в межреберном канале продольно-оребренных труб исключает дополнительные затраты энергии, связанные с гидравлическим сопротивлением на поворотах потока перегретого пара и конденсата.
название | год | авторы | номер документа |
---|---|---|---|
Теплофикационная парогазовая установка | 2020 |
|
RU2745470C1 |
Парогазовая установка с охлаждаемым диффузором | 2019 |
|
RU2715073C1 |
СПОСОБ РАБОТЫ И УСТРОЙСТВО ПАРОГЕНЕРАТОРА ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2002 |
|
RU2232914C2 |
Парогазовая установка с воздушным конденсатором | 2020 |
|
RU2745468C1 |
Поверхностный конденсатор | 1982 |
|
SU1086333A1 |
СИСТЕМА ПОДОГРЕВА УСТАНОВКИ С ТЕПЛОВЫМ ДВИГАТЕЛЕМ | 2016 |
|
RU2641775C1 |
КОМБИНИРОВАННЫЙ КОНДЕНСАТОР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ | 2003 |
|
RU2317500C2 |
ТЕПЛООБМЕННИК | 1992 |
|
RU2037121C1 |
ПОВЕРХНОСТНЫЙ КОНДЕНСАТОР ВОЗДУШНОГО ОХЛАЖДЕНИЯ | 2011 |
|
RU2485427C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГИДРАВЛИЧЕСКОЙ ПЛОТНОСТИ КОНДЕНСАТОРА ПАРОТУРБИННОЙ УСТАНОВКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2091690C1 |
Изобретение относится к области теплотехники и может быть использовано в энергетических установках. Энергетическая установка состоит из паровой турбины, рекуператора с поверхностью теплообмена, промежуточными перегородками и коллекторами подвода и отвода конденсата, конденсатора пара с конденсатно-питательным насосом, паропровода от турбины к конденсатору. Поверхность теплообмена рекуператора набрана из продольно-оребренных труб с концами, свободными от оребрения, зафиксированными промежуточными перегородками в шестигранные трубные пучки, количество труб в пучке из n рядов равно
Энергетическая установка, состоящая из паровой турбины, рекуператора, конденсатора пара с конденсатно-питательным насосом, паропровода от турбины к конденсатору, поверхности теплообмена рекуператора с промежуточными перегородками и коллекторами подвода и отвода конденсата, отличающаяся тем, что поверхность теплообмена рекуператора набрана из продольно-оребренных труб с концами, свободными от оребрения, продольно-оребренные трубы зафиксированы промежуточными перегородками в шестигранном трубном пучке из n рядов, количество труб в которых равно ∑6n+1, свободные концы продольно-оребренных труб закреплены сваркой или вальцовкой в трубные доски с выпуклыми крышками и конденсатной трубой, конденсатные трубы присоединены сваркой к коллекторам подвода и отвода конденсата поверхности теплообмена, а поверхность теплообмена размещена внутри паропровода от турбины к конденсатору с конденсатным насосом.
Приспособление к прядильным ватерам для прекращения подачи ровницы и останова веретена при обрыве нити | 1936 |
|
SU50606A1 |
Система отвода тепла от энергетического контура | 1989 |
|
SU1563295A1 |
ТРУБЧАТЫЙ ТЕПЛООБМЕННИК | 2004 |
|
RU2282122C2 |
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pQe30_PS-CFP2/Turbo YFP_MBP7, КОДИРУЮЩАЯ ГИБРИДНЫЙ БЕЛОК PS-CFP2/Turbo YFP_MBP7, ШТАММ Escherichia coli BL21(DE3)/pQe30_PS-CFP2/Turbo YFP_MBP7 - ПРОДУЦЕНТ УКАЗАННОГО БЕЛКА И СПОСОБ ПОЛУЧЕНИЯ БЕЛКА PS-CFP2/Turbo YFP_MBP7 | 2009 |
|
RU2430161C2 |
СПОСОБЫ И СИСТЕМЫ ДЛЯ ДАТЧИКА КИСЛОРОДА НА ВПУСКЕ | 2014 |
|
RU2653721C2 |
Авторы
Даты
2021-11-30—Публикация
2020-05-29—Подача