Устройство для термической обработки металлических, полупроводниковых подложек и аморфных плёнок Российский патент 2021 года по МПК H05B3/06 

Описание патента на изобретение RU2761867C1

Изобретение относится к технологии термической обработки металлических, полупроводниковых подложек и аморфных пленок.

Известны устройства для осуществления отжига аморфных слоев, окислительных и диффузионных процессов (1, 2).

Недостатком этих устройств является расположение проволоки нагревательного элемента в канавке, образованной внутри изоляционного материала и имеющего форму проволочного элемента. В такой конструкции существует риск того, что проволока элемента частично выползет из канавки в результате теплового расширения.

Также известны устройства с несколькими зонами нагрева (3, 4, 5, 6). Однако их недостатком является локальное снижение температуры в области соприкосновения нагревателей. В этой области теплового узла возникает градиент температуры в подложке, что может привести к изменению коэффициента диффузии.

Наиболее близким по конструктивным особенностям к предлагаемому изобретению, имеющее максимальное число совпадающих с ним существенных признаков, является устройство, защищенное патентом Южной Кореи (7).

Это устройство для термической обработки металлических, полупроводниковых подложек и аморфных пленок содержит корпус с размещенной внутри него теплоизоляцией, подложкодержатель и нагреватель. Последний состоит из множества керамических элементов, через которые протягивается металлическая проволока. Каждый керамический элемент с одной стороны имеет выступ, а с другой - выемку, посредством чего осуществляется сборка в единый цилиндрический тепловой узел. С внутренней стороны, обращенной к нагреваемому объекту, в керамических элементах имеются отверстия для лучшей передачи тепла от проволочного нагревателя.

Недостатками этого устройства являются сложность конструкции единичного керамического элемента и связанная с этим трудоемкость сборки и обслуживания нагревателя. Наличие отверстий на внутренней стороне нагревателей приводит к критичной для процессов термической обработки полупроводников и аморфных пленок неоднородности теплового поля, что влияет на качество получаемых и обрабатываемых материалов.

Задачей изобретения является обеспечение равномерного температурного поля в области расположения обрабатываемого материала и удобство сборки и обслуживания нагревателя.

Техническим результатом является получение подложек и пленок высокого качества.

Это достигается благодаря тому, что в устройстве для термической обработки металлических, полупроводниковых подложек и аморфных пленок, содержащем корпус с размещенной внутри него теплоизоляцией, подложкодержатель и нагреватель, нагреватель содержит два дистанционно расположенных кварцевых кольца, вокруг которых расположены по окружности, плотно прилегающие друг к другу цилиндрические трубки, через которые протянута проволока из жаропрочных материалов, выполняющая функцию нагревательной спирали. Кварцевые кольца расположенные на концах нагревателя имеют высоту 0,1-0,15Н, внутренний диаметр 1,2-1,3D и внешний диаметр 1,4-1,5D, высота нагревателя hH составляет 1,1-1,2Н, внутренний диаметр 1,4-1,5D и внешний диаметр 1,6-1,7D,

где Н-высота подложкодержателя, а D-внешний диаметр подложкодержателя.

Сущность изобретения поясняется схемами на фигурах.

Фиг. 1 Общий вид устройства в разрезе.

Фиг. 2 Общий вид нагревателя в аксонометрии.

Фиг. 3 Общий вид подложкодержателя в аксонометрии.

Устройство содержит внешний корпус 1 со слоем внутренней изоляции 2 и внутренним корпусом 3 и нагреватель 4 (фиг. 2), образованный плотно соприкасающимися трубками, которые собраны вокруг двух формазадающих кварцевых колец 5. Через трубки протянута проволока из жаропрочных материалов, выполняющая функцию нагревательной спирали.

Кварцевые кольца 5 устанавливают внутрь нагревателя 4 таким образом, чтобы один торец каждого кольца совпадал по уровню с торцом керамических трубочек нагревателя 4, благодаря чему обеспечивается практически цилиндрическая форма нагревателя. Внутри нагревателя размещен подложкодержатель 6 (фиг. 3). Термопара 7 применяется для контроля за температурой внутри нагревателя.

Материал колец 5 выбран, исходя из низкой диэлектрической проницаемости и высокой термической и химической устойчивости кварцевого стекла. Высота hК кварцевых колец 5 меньше высоты Н подложкодержателя 6 в 0,1-0,15 раза. Уменьшение высоты менее чем в 0,1 раза приведет к низкой прочности формообразующего кольца. Увеличение высоты более чем в 0,15 раза приведет к увеличению затрат электроэнергии в процессе термической обработки в связи с тем, что кварц будет служить дополнительным теплоизоляционным слоем, термическое сопротивление которого необходимо будет компенсировать.

Внутренний диаметр dКв колец 5 больше внешнего диаметра D подложкодержателя 6 в 1,2-1,3 раза, а внешний dКн больше диаметра подложкодержателя 6 в 1,4-1,5 раза. При внутреннем и внешнем диаметрах колец менее 1,2 и 1,4, соответственно, возникает сложность в установке подложкодержателя с образцами. Увеличение внутреннего и внешнего диаметров колец более 1,3 и 1,5 раза, соответственно, требует повышения мощности нагревателей за счет увеличения расстояния между нагревателем и подложкодержателем, что значительно повышает расход электроэнергии и требует дополнительной теплоизоляции внешней поверхности нагревателей.

Высота hн нагревателя 4 больше высоты Н подложкодержателя 6 в 1,1-1,2 раза. Уменьшение высоты менее чем в 1,1 раза из-за конструктивных особенностей резистивного нагревателя не позволит создать равномерное температурное поле в поперечном сечении теплового узла. Увеличение высоты нагревателя более чем в 1,2 раза приведет к увеличению затрат на изготовление нагревателя за счет расхода материалов и затрат электроэнергии в процессе термической обработки.

Внутренний диаметр d нагревателя 4 больше внешнего диаметра D подложкодержателя 6 в 1,4-1,5 раза, а внешний d больше диаметра подложкодержателя 6 в 1,6-1,7 раза.

Уменьшение внутреннего диаметра менее 1,4 раза ограничивается диаметрами формообразующих колец 5 в связи с конструктивными особенностями за счет отклонения величины диаметра. Превышение внутреннего диаметра нагревателя более чем в 1,5 раза приведет к увеличению требуемой мощности нагревателей за счет увеличения расстояния между нагревателем и подложкодержателем, что значительно повысит расход электроэнергии. Уменьшение внешнего диаметра нагревателя менее 1,6 раза из-за конструктивных особенностей резистивного нагревателя не позволит создать равномерное температурное поле в поперечном сечении нагревателей. Превышение внешнего диаметра нагревателя 4 более чем в 1,7 раза приведет к увеличению расхода материалов, электроэнергии и сложности регулирования температуры.

Внутренний корпус 3 обеспечивает фиксацию нагревателя с подложкодержателем и обрабатываемым материалом внутри теплоизоляционного слоя.

Устройство функционирует следующим образом.

В подложкодержатель 6 загружают пластины обрабатываемого материала. Подложкодержатель 6 с обрабатываемым материалом устанавливают внутри теплового узла соосно с нагревателем. После фиксации подложкодержателя тепловой узел помещается в рабочую камеру ростовой установки для выращивания слоев или в установку вакуумного напыления для отжига тонкопленочных структур при высоком вакууме. После создания в рабочей камере необходимой атмосферы и давления к нагревателю 4 подают напряжение. Подводимое напряжение увеличивают постепенно, чтобы обеспечить медленный рост температуры загруженного материала. Увеличение температуры должно происходить со скоростью 3-10°С/мин для медленного нагрева, предотвращающего увеличение внутренних напряжений в обрабатываемом материале. После достижения заданной температуры нагревателя производится выдержка. После выдержки обеспечивают плавное снижение температуры нагревателя для предотвращения образования внутренних напряжений в обработанном материале.

Пример осуществления изобретения

Для высокотемпературного мягкого отжига аморфных тонкопленочных структур типа сульфида самария (SmS) в условиях высокого вакуума с целью структурных преобразований или релаксации механических напряжений подложки диаметром 25 мм с напыленными пленками помещали в рабочую камеру напылительного оборудования типа ВУП-5. Затем рабочую камеру откачивали до вакуума (2-5)⋅10-3 Па и подавали регулируемое напряжение на нагреватель. Отжиги проводили в интервале температур (600-1000)°С. Контроль температуры осуществляли термопарой типа ТТП, встроенной в нагреватель. После выдержки в течение заданного времени температуру снижали со скоростью охлаждения не более 3°С/мин. В результате высокотемпературного отжига в высоком вакууме были получены монокристаллические пленки SmS хорошего структурного качества.

Проведенные эксперименты по высокотемпературному мягкому отжигу тонкопленочных структур типа SmS в предлагаемом устройстве подтверждают возможность его использования как в исследовательских целях, так и в промышленности.

Источники информации:

1. US 20100059499, "Heater element as well as an insert for electrical furnaces", МПК F27B 14/00, H05B 3/10, опубл. 2010-03-11.

2. US 6008477 «Heat treatment apparatus » МПК H01L 21/00, опубл. 1999-12-28.

3. US 7003014 B2, «Electric heater for thermal treatment furnace», МПК F27D 11/02, опубл. 2005-03-31.

4. US 7027722 «Electric heater for a semiconductor processing apparatus)) МПК H01L 21/00, опубл. 2005-04-21.

5. US 10364494 «Substrate processing apparatus)) МПК C23C 16/455, опубл. 2019-07-30.

6. US 6737613, «Heat treatment apparatus and method for processing substrates)) МПК F27B 5/14 опубл. 2004-05-18.

7. KR 200481285 Y1, «Modular heater for cylinder)) МПК H05B 3/06, опубл. 2016-09-07.

Похожие патенты RU2761867C1

название год авторы номер документа
РЕАКТОР С ПОДЛОЖКОДЕРЖАТЕЛЕМ ДЛЯ ПОЛУЧЕНИЯ СЛОЕВ ИЗ ГАЗОВОЙ ФАЗЫ ПРИ ПОНИЖЕННОМ ДАВЛЕНИИ 2010
  • Манжа Николай Михайлович
  • Титов Александр Игоревич
  • Стеблин Сергей Александрович
RU2448205C1
CVD-РЕАКТОР И СПОСОБ СИНТЕЗА ГЕТЕРОЭПИТАКСИАЛЬНЫХ ПЛЕНОК КАРБИДА КРЕМНИЯ НА КРЕМНИИ 2008
  • Синельников Борис Михайлович
  • Тарала Виталий Алексеевич
  • Митченко Иван Сергеевич
RU2394117C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНЫХ РЕЗИСТОРОВ 2004
  • Смолин Валентин Константинович
RU2270490C1
CVD-РЕАКТОР СИНТЕЗА ГЕТЕРОЭПИТАКСИАЛЬНЫХ ПЛЕНОК КАРБИДА КРЕМНИЯ НА КРЕМНИЕВЫХ ПОДЛОЖКАХ 2021
  • Сурнин Олег Леонидович
  • Чепурнов Виктор Иванович
RU2767098C2
УСТРОЙСТВО НАГРЕВА ПОДЛОЖКИ ДЛЯ УСТАНОВКИ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ 2010
  • Шенгуров Владимир Геннадьевич
  • Светлов Сергей Петрович
  • Чалков Вадим Юрьевич
  • Денисов Сергей Александрович
RU2468468C2
СПОСОБ ОСАЖДЕНИЯ АЛМАЗНЫХ ПЛЁНОК ИЗ ТЕРМИЧЕСКИ АКТИВИРОВАННОЙ СМЕСИ ГАЗОВ И РЕАКТОР ДЛЯ ЕГО РЕАЛИЗАЦИИ 2016
  • Ребров Алексей Кузьмич
  • Андреев Марк Нюргунович
  • Бъядовский Тимур Тимурович
  • Кубрак Константин Владимирович
  • Сафонов Алексей Иванович
RU2653036C2
Устройство для осаждения слоев из газовой фазы 1979
  • Иванов Вадим Иванович
  • Сигалов Эдуард Борисович
  • Капустин Николай Михайлович
  • Николайкин Николай Иванович
SU905342A1
УСТРОЙСТВО ДЛЯ ИОННО-ПЛАЗМЕННОГО НАПЫЛЕНИЯ 2018
  • Юшков Василий Иванович
  • Турпанов Игорь Александрович
  • Патрин Геннадий Семенович
  • Кобяков Александр Васильевич
RU2691357C1
СПОСОБ ФОРМИРОВАНИЯ МНОГОСЛОЙНЫХ НАНОКРИСТАЛЛИЧЕСКИХ ПЛЕНОК С ГЕТЕРОГЕННОЙ ГРАНИЦЕЙ РАЗДЕЛА И УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МНОГОСЛОЙНЫХ НАНОКРИСТАЛЛИЧЕСКИХ ПЛЕНОК С ГЕТЕРОГЕННОЙ ГРАНИЦЕЙ РАЗДЕЛА 2010
  • Томаев Владимир Владимирович
RU2436876C1
УСТАНОВКА ДЛЯ ВЫСОКОТЕМПЕРАТУРНОГО ВАКУУМНОГО ОТЖИГА ТОНКИХ ПЛЁНОК С ВОЗМОЖНОСТЬЮ IN SITU ОПТИЧЕСКОГО НАБЛЮДЕНИЯ С ВЫСОКИМ РАЗРЕШЕНИЕМ 2020
  • Замчий Александр Олегович
  • Баранов Евгений Александрович
  • Сафонов Алексей Иванович
  • Константинов Виктор Олегович
RU2755405C1

Иллюстрации к изобретению RU 2 761 867 C1

Реферат патента 2021 года Устройство для термической обработки металлических, полупроводниковых подложек и аморфных плёнок

Изобретение относится к технологии термической обработки металлических, полупроводниковых подложек и аморфных пленок. Устройство содержит корпус с размещенной внутри него теплоизоляцией, подложкодержатель и нагреватель, нагреватель содержит два дистанционно расположенных кварцевых кольца, вокруг которых расположены по окружности плотно прилегающие друг к другу цилиндрические трубки, через которые протянута проволока из жаропрочных материалов, выполняющая функцию нагревательной спирали. Кварцевые кольца, расположенные на концах нагревателя, имеют высоту 0,1-0,15Н, внутренний диаметр 1,2-1,3D и внешний диаметр 1,4-1,5D, высота нагревателя hH составляет 1,1-1,2Н, внутренний диаметр 1,4-1,5D и внешний диаметр 1,6-1,7D, где Н - высота подложкодержателя, а D - внешний диаметр подложкодержателя. Изобретение обеспечивает создание равномерного температурного поля в области расположения обрабатываемого материала и удобство сборки и обслуживания нагревателя. 3 ил.

Формула изобретения RU 2 761 867 C1

Устройство для термической обработки металлических, полупроводниковых подложек и аморфных пленок, содержащее корпус с размещенной внутри него теплоизоляцией, подложкодержатель и нагреватель, отличающееся тем, что нагреватель содержит два дистанционно расположенных кварцевых кольца, вокруг которых расположены по окружности плотно прилегающие друг к другу цилиндрические трубки, через которые протянута проволока из жаропрочных материалов, выполняющая функцию нагревательной спирали, причем кварцевые кольца, расположенные на концах нагревателя, имеют высоту 0,1-0,15Н, внутренний диаметр 1,2-1,3D и внешний диаметр 1,4-1,5D, высота нагревателя hH составляет 1,1-1,2Н, внутренний диаметр 1,4-1,5D и внешний диаметр 1,6-1,7D, где Н - высота подложкодержателя, а D - внешний диаметр подложкодержателя.

Документы, цитированные в отчете о поиске Патент 2021 года RU2761867C1

KR 200481285 Y1, 07.09.2016
US 20100059499 A1, 11.03.2010
US 6008477 A1, 28.12.1999
US 7003014 B2, 31.03.2005
US 7027722 B1, 02.05.2006
US 10364494 B2, 30.07.2019
US 6737613 B2, 18.05.2004
Е УСТРОЙСТВО для 0
SU199483A1

RU 2 761 867 C1

Авторы

Супельняк Станислав Игоревич

Безруков Александр Владимирович

Даты

2021-12-13Публикация

2021-07-01Подача