Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых первичных и вторичных источников тока, а также в суперконденсаторах. Гельполимерный электролит состоит из полимерной матрицы и пластификатора, включающего в себя апротонный диполярный растворитель и соль лития.
Известны гельполимерные электролиты, используемые в литиевых источниках тока, состоящие из смеси полимеров с растворителем и тетрафтороборатом лития, причем в качестве полимеров используются смеси поливинилиденфторида с гексафторпропиленом [1]. Для этих композиций удельная электрическая проводимость лежит в интервале (1.1-1.7)*10-3 См/см, что значительно ниже, чем у жидких электролитов. Поэтому источники тока с такими электролитами имеют большие омические потери.
Известны гельполимерные электролиты, включающие полимерную матрицу, состоящую из сополимера трифторхлорэтилена и винилиденфторида и сополимера полиэтиленгликольакрилата, полученную при различных содержаниях полиэтиленгликольакрилата (20, 50, 75%), в которую вводился методом пропитки перхлорат лития или тетрафтороборат лития в пропиленкарбонате [2]. Для этих композиций удельная электрическая проводимость составляет 9*10-3 См/см. Содержание растворителя находится в диапазоне от 500 до 2000 массовых частей в расчете на 100 массовых частей полимерной матрицы. В связи с этим возникают потери растворителя в результате утечки или испарения и, как следствие, растет сопротивления ячейки и нарушается контакт с электродами, а также наблюдается пассивация лития.
Наиболее близким по технической сущности и достигаемым результатом является гельполимерный электролит, который содержит полимерную матрицу на основе перфторполиэфира, неорганическую ионогенную соль лития и органический растворитель, в качестве которого используют смесь пропиленкарбоната с тетрагидрофураном взятых в соотношении (об.%) 1:1 - 1:4, при следующем массовом соотношении компонентов, мас. ч.:
перфторполиэфир - 100,
неорганическая ионогенная соль лития - 7-30,
органический растворитель - 80-140.
Для него удельная электрическая проводимость достигает 10-2 См/см, что не уступает соответствующим значениям для жидких электролитов, используемых в настоящее время в литиевых источниках тока [3]. Однако было обнаружено резкое (на порядок) снижение удельной электропроводности при низких температурах. Кроме этого, для этого гельполимерного электролита характерна невысокая механическая прочность - не более 8 МПа.
Техническая задача, решаемая изобретением, состоит в повышении удельной электрической проводимости гельполимерного электролита в широком температурном диапазоне и механической прочности, а также обеспечении его химической и электрохимической стабильности. Технический результат, заключающийся в увеличении гомогенности электролита и повышении коэффициента диффузии лития и предела прочности, достигается тем, что в известном гельполимерном электролите, содержащем полимерную матрицу, органический растворитель и неорганическую ионогенную соль лития, согласно изобретению в качестве полимерной матрицы используется поли [1,4 - фениленокси - 4-бис(трифторметил)метан - 6,9 - фениленокси - 10,13 - фениленсульфонил - 14,17 фенилен] средней молекулярной массы (0.4-1.0)⋅105 при следующем массовом соотношении компонентов, мас. ч.:
поли [1,4 - фениленокси - 4-бис(трифторметил)метан - 6,9 - фениленокси - 10,13 - фениленсульфонил - 14,17 фенилен] - 100,
неорганическая ионогенная соль лития - 6-28,
органический растворитель - 80-140.
При таких значениях средней молекулярной массы полимер обладает хорошими пленкообразующими свойствами, что позволяет получить гельполимерный электролит с хорошими механическими свойствами.
Обоснование выбранных интервалов компонентов:
- уменьшение количества соли менее нижнего предела приводит к неравномерности распределения ее по полимерной матрице и соответственно к ухудшению проводящих свойств; увеличение количества соли лития более верхнего предела приводит к ухудшению электропроводности за счет выпадения кристаллов соли в осадок.
- уменьшение количества растворителя приводит к получению жесткого геля, что снижает его электропроводность, а увеличение количества растворителя приводит к ухудшению механических свойств гельполимерного электролита
Гельполимерный электролит готовится следующим образом:
порошок поли [1,4 - фениленокси - 4-бис(трифторметил)метан - 6,9 - фениленокси - 10,13 - фениленсульфонил - 14,17 фенилена] растворяют в диметилацетамиде, тщательно перемешивают, выливают на специальное стекло и выдерживают в сушильном шкафу при t=100±5°С до получения пленки толщиной 10÷50 мкм. Затем пленка полимера пропитывается раствором соли лития в смеси пропиленкарбоната и тетрагидрофурана в закрытом бюксе в боксе, заполненном аргоном, в течение 18-20 часов.
В таблице приведены примеры конкретных составов и свойств заявленных гельполимерных электролитов.
Удельная электрическая проводимость прототипа при отрицательных температурах ниже на 32-47%, а механическая прочность на 42-67%. Гельполимерный электролит прошел успешные испытания в аккумуляторе на основе системы литий - фосфат лития-железа (типоразмер 2325) и первичном элементе системы литий- диоксид марганца (типоразмер 2025). На протяжении 450 циклов заряда-разряда аккумулятора и 360 часах разряда первичного элемента током 0.6 мА сохранялись стабильные электрохимические параметры как гельполимерного электролита, так и источников тока в целом.
Преимущества предлагаемого гельполимерного электролита заключаются в его высокой удельной электрической проводимости в широком температурном интервале, механической прочности, электрохимической стабильности и химической инертности, чем он выгодно отличается от известных.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. ЮР Conference Series: Materials Science and Engineering. 2017. V. 225. P. 12049.
2. Патент РФ №2424252, опубл. 20.07.2011.
3. Патент РФ №2614040, опубл. 22.03.2017.
название | год | авторы | номер документа |
---|---|---|---|
ТВЕРДОПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ | 2021 |
|
RU2760559C1 |
ГЕЛЬПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА | 2016 |
|
RU2614040C1 |
ГЕЛЬ-ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА | 2015 |
|
RU2594763C1 |
ГЕЛЬПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА | 2001 |
|
RU2190903C1 |
ГЕЛЬ-ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ И ИСТОЧНИК ТОКА С ЕГО ИСПОЛЬЗОВАНИЕМ | 2009 |
|
RU2424252C2 |
ГЕЛЬ-ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА | 2011 |
|
RU2457587C1 |
ПОЛИМЕРНЫЙ ГЕЛЬ-ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ | 2023 |
|
RU2814465C1 |
ТВЕРДЫЙ ЛИТИЙПРОВОДЯЩИЙ ЭЛЕКТРОЛИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1993 |
|
RU2066901C1 |
ТВЕРДЫЙ ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА | 2012 |
|
RU2503098C1 |
ИОНОПРОВОДЯЩИЙ ТЕРМООБРАТИМЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ И ПОЛИМЕРИЗУЕМЫЙ СОСТАВ ДЛЯ ЕГО ПОЛУЧЕНИЯ | 2000 |
|
RU2241282C2 |
Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых первичных и вторичных источников тока, а также в суперконденсаторах. Увеличение гомогенности электролита и повышение коэффициента диффузии лития и механической прочности гельполимерного электролита является техническим результатом изобретения. Указанный результат достигается за счет использования в качестве полимерной матрицы аморфного поли [1,4 - фениленокси - 4-бис(трифторметил)метан - 6,9 - фениленокси - 10,13 - фениленсульфонил - 14,17 фенилена]. 1 табл.
Гельполимерный электролит, состоящий из полимерной матрицы, органического растворителя и неорганической ионогенной соли лития, отличающийся тем, что в качестве полимерной матрицы используется порошок поли [1,4 - фениленокси - 4-бис(трифторметил)метан - 6,9 - фениленокси - 10,13 - фениленсульфонил - 14,17 фенилен] средней молекулярной массы (0.4-1.0)⋅105 при следующем массовом соотношении компонентов, мас. ч.:
поли [1,4 - фениленокси - 4-бис(трифторметил)метан - 6,9 - фениленокси - 10,13 - фениленсульфонил - 14,17 фенилен] - 100,
неорганическая ионогенная соль лития - 6-28,
органический растворитель - 80-140.
ГЕЛЬПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА | 2016 |
|
RU2614040C1 |
ГЕЛЬ-ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ И ИСТОЧНИК ТОКА С ЕГО ИСПОЛЬЗОВАНИЕМ | 2009 |
|
RU2424252C2 |
ГЕЛЬ-ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЛИТИЕВЫХ ИСТОЧНИКОВ ТОКА | 2015 |
|
RU2594763C1 |
US 2005238962 A1, 27.10.2005 | |||
US 2011281172 A1, 17.11.2011. |
Авторы
Даты
2021-12-23—Публикация
2021-05-31—Подача