Рентгенозащитная композиция Российский патент 2022 года по МПК G21F1/10 

Описание патента на изобретение RU2768360C1

Изобретение относится к радиационно-защитным материалам и может быть использовано для изготовления средств защиты для людей и оборудования от рентгеновского излучения.

Известны рентгенозащитные композиции на основе поливинилхлорида (ПВХ) и полипиррола, содержащие в качестве наполнителя порошкообразный свинец или оксид свинца [Wardley R.B. UK Patent Application, GB 2118410 A, 1983, Hosseini, S.H., Ezzati, S.N., Askari, M., Synthesis, characterization and &»ray shielding properties of polypyrrole / lead nanocomposites. Pohm. Adv. Technol. 2015, 26, 561-568]. Композиции обеспечивают хорошее ослабление (HVT (толщина половинного ослабления) ниже 0.1 мм при энергии рентгеновских фотонов до 25 кэВ), но имеют существенные недостатки: высокая токсичность наполнителя, недостаточная гибкость и жесткость материала. Недостатки таких композиций создают технологические трудности при изготовлении изделий на их основе и служат препятствием для широкого использования материала.

Известна рентгенозащитная композиция на основе бутадиенового (или бутадиен-нитрильного) и дивинилстирольного каучуков, содержащая в качестве наполнителя вольфрам и оксиды тяжелых металлов [Андреев В.В., Попков К.К., Барковский А.Н., Добренякин Ю.П., Милюхина Г.К., Кузнецов Р.А., Хухарев В.В., Титов А.А., Старостин Б.С. Патент РФ №2030803, опубл. 10.03.1995]. Получаемый на ее основе материал обладает высокой рентгенозащитной эффективностью (свинцовый эквивалент - 0.52 мм для образцов с максимальным содержанием окиси свинца. 0.80 мм для образцов с максимальным содержанием вольфрама), однако его недостатками являются недостаточно широкий температурный интервал применения (-30-180°С), а также большой удельный вес.

Известна рентгенозащитная композиция на основе диметилсилоксанового каучука, содержащая в качестве наполнителя наночастицы оксида висмута, однако его защитные свойства недостаточно высоки (свинцовый эквивалент - 0.25 мм для образцов толщиной 3.73 мм) [Nambiar, Sh., Osei, Е.K. Yeow, J.T.W. Polymer Nanocomposite-Based Shielding Against Diagnostic X-rays J. APPL, POLYM. SCI. 2013, 127, 6, 4939-4946].

Наиболее близким аналогом, взятым за прототип, является композиция для защиты от рентгеновского излучения на основе диметилсилоксанового каучука СКТН-А. содержащая в качестве наполнителя смесь оксидов лантаноидов ВКР-5М (ТУ 95.1537-87-1) и оксид сурьмы (III) в соотношении (мас. ч): СКТН-А - 100, порошкообразный наполнитель (смесь ВКР-5М и Sb2O3)- 350-450, катализа гор холодного отверждения К-68 (ТУ 38.303-04-05-90) - 3-4. [Кушникова Р.В., Пряникова I.Ф. Патент РФ, №2156509 опубл. 20.09.2000, бюл. №26]. Эффективность защиты (свинцовый эквивалент) 0.45-0.57. Недостатками материала являются относительно невысокая термостойкость и термоокислительная стабильность, не позволяющая использовать материал длительно при температуре 250-300°С, а также недостаточно высокие рентгенозащитные свойства.

Задачей заявляемого изобретения является получение рентгенозащитного материала с улучшенными защитными и физико-химическими характеристиками, который может наноситься на одежду и элементы защищаемых конструкций разной геометрии.

Технических результатом предлагаемого изобретения является улучшение рентгенозащитных свойств и физико-химические характеристик рентгенозащитного материала, возможность нанесения на сложные поверхности и расширение температурного диапазона применения материала.

Технический результат достигается тем, что в рентгенозащитной композиции на основе диметилсилоксанового каучука, включающей катализатор холодного отверждения и поглощающий рентгеновское излучение наполнитель, в качестве наполнителя использован фторид висмута при соотношении массовых частей:

диметилсилоксановый каучук 20 масс. ч. фторид висмута 78 масс. ч. отвердитель 0.4 масс. ч.

Фторид висмута в виде мелкодисперсного порошка вводится в полимер на стадии полимеризации. Максимальное количество фторида висмута в системе, при котором материал сохраняет механическую прочность, эластичность и термическую устойчивость, составляет 78 массовых частей (содержание основного вещества не менее 99.9%).

Способ получения рентгенозащитного материала на полимерной основе, включает следующие стадии:

1 - смешивание раствора каучука СКТН-Л (20 масс. ч.) в гексане с порошком фторида висмута (78 масс. ч.):

2 - перемешивание смеси на магнитной мешалке в течение 20 мин;

3 - помешивание смеси при воздействии ультразвука в течение 20 мин;

4 - добавление 0.4 масс. ч. раствора аминопропилтриэтоксилана (АГМ-9) в этилсиликате с соотношением 1:4 (катализатора К-68) и перемешивание смеси еще 5 мин;

5 - удаление растворителя при пониженном давлении.

Для изготовления опытных образцов композиция заливается в форму необходимого размера. Время отверждения приготовленного материала при комнатной температуре - 20 часов.

Заявляемое изобретение иллюстрируется следующим примером: На магнитной мешалке к раствору 1.0 г СКТН-А в 10 мл гексана при перемешивании добавили 3.0 г порошкообразного BiF3 (H2O), смесь перемешивали в течение 20 мин при комнатной температуре. Затем смесь помещали в ультразвуковую ванну и перемешивали в течение еще 20 мин. К смеси добавляли 0.02 г катализатора, затем ее перемешивали еще 5 мин. Гексан удаляли при пониженном давлении, остаток в виде вязкой белой жидкости перенесли в металлическую форму (15 × 15 × 2 мм). Для исключения прилипания образца к поверхности формы ее дно перед заполнением рабочей суспензией покрывали парафильмовой пленкой Parafiim РМ-992. После заполнения форму накрыли такой же пленкой Parafilm РМ-992 и стеклянной пластиной. Для выдавливания излишков рабочей суспензии и формирования ровной поверхности образца на стеклянную пластину помещали груз. Время отверждения приготовленного материала при комнатной температуре ~ 20 часов.

Экспериментально полученные экранирующие характеристики материала, состоящего из 20 масс. ч. диметилсилоксанового каучука СКТН-А и 78 масс. ч. фторида висмута, соответствуют следующим параметрам: толщина слоя материала, при которой интенсивность радиации ослабляется в два раза (HVL) составляет 2 мм, массовый коэффициент ослабления 35.2 μч см2/г. Присутствие наполнителя - фторида висмута - не оказывает существенного влияния на терморазложение материала, его термостойкость определяется термостойкостью полисилоксановой матрицы.

Таким образом, решение технической задачи позволяет получить термостойкий рентгенозащитный висмутсодержащий композитный материал на полимерной основе с возможностью нанесения на одежду и элементы защищаемых конструкций разной геометрии.

Похожие патенты RU2768360C1

название год авторы номер документа
РЕНТГЕНОЗАЩИТНАЯ КОМПОЗИЦИЯ 1995
  • Кушникова Р.В.
  • Капитанов К.А.
  • Пряникова Г.Ф.
RU2138865C1
СЛОИСТЫЙ РЕНТГЕНОЗАЩИТНЫЙ МАТЕРИАЛ 1997
  • Кушникова Р.В.
  • Пряникова Г.Ф.
RU2156509C2
РЕНТГЕНОЗАЩИТНАЯ КОМПОЗИЦИЯ 2000
  • Назарова Е.С.
  • Кушникова Р.В.
  • Пряникова Г.Ф.
RU2194317C2
РЕНТГЕНОЗАЩИТНОЕ ПОКРЫТИЕ 2003
  • Кушникова Регина Всеволодовна
  • Кадырова Галлия Рахимгиреевна
  • Назарова Елена Савельевна
  • Пряникова Галина Федоилевна
  • Капитанов Константин Автономович
  • Никитин Владимир Михайлович
  • Коршунова Гульзара Хамитовна
  • Быкова Эмма Валеевна
RU2281572C2
РЕНТГЕНОЗАЩИТНАЯ КОМПОЗИЦИЯ 2009
  • Дернова Людмила Павловна
  • Клейменов Валерий Дмитриевич
  • Плясунов Юрий Иванович
  • Фатьянова Марина Эрнстовна
RU2415485C1
Композиция для кремнийорганического электроизоляционного материала 2017
  • Чухланов Владимир Юрьевич
  • Селиванов Олег Григорьевич
  • Черняшкина Яна Игоревна
  • Чухланова Наталья Владимировна
RU2672447C1
РЕНТГЕНОЗАЩИТНАЯ КОМПОЗИЦИЯ 2002
  • Савкин Геннадий Григорьевич
  • Кушникова Регина Всеволодовна
  • Назарова Елена Савельевна
  • Пряникова Галина Федоилевна
  • Капитанов Константин Автономович
  • Сальникова Любовь Николаевна
RU2294030C2
Композиция для кремнийорганического электроизоляционного покрытия 2021
  • Чухланов Владимир Юрьевич
  • Селиванов Олег Григорьевич
  • Чухланова Наталия Владимировна
RU2775337C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2010
  • Гладких Светлана Николаевна
  • Ткаченко Ирина Валерьевна
RU2437912C1
Композиционный материал для защиты от внешних воздействующих факторов и способ его получения 2018
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
RU2721323C1

Реферат патента 2022 года Рентгенозащитная композиция

Изобретение относится к радиационно-защитным материалам и может быть использовано для изготовления средств защиты для людей и оборудования от рентгеновского излучения. Рентгенозащитная композиция на основе диметилсилоксанового каучука, включающая: диметилсилоксановый каучук - 20 масс. ч.; фторид висмута - 78 масс. ч.; отвердитель - 0.4 масс.ч. Изобретение позволяет улучшить рентгенозащитные свойства и физико-химические характеристики рентгенозащитного материала.

Формула изобретения RU 2 768 360 C1

Рентгенозащитная композиция на основе диметилсилоксанового каучука, включающая катализатор холодного отверждения и поглощающий рентгеновское излучение наполнитель, отличающаяся тем, что в качестве наполнителя использован фторид висмута при соотношение массовых частей:

диметилсилоксановый каучук 20 масс. ч. фторид висмута 78 масс. ч. отвердитель 0.4 масс. ч.

Документы, цитированные в отчете о поиске Патент 2022 года RU2768360C1

РЕНТГЕНОЗАЩИТНАЯ КОМПОЗИЦИЯ 2009
  • Дернова Людмила Павловна
  • Клейменов Валерий Дмитриевич
  • Плясунов Юрий Иванович
  • Фатьянова Марина Эрнстовна
RU2415485C1
РЕНТГЕНОЗАЩИТНАЯ КОМПОЗИЦИЯ 1995
  • Кушникова Р.В.
  • Капитанов К.А.
  • Пряникова Г.Ф.
RU2138865C1
КОМПОЗИЦИЯ НА ОСНОВЕ ЖИДКОГО НИЗКОМОЛЕКУЛЯРНОГО СИЛОКСАНОВОГО КАУЧУКА ДЛЯ ОГНЕСТОЙКОГО МАТЕРИАЛА 2011
  • Хелевина Ольга Григорьевна
RU2460751C1
РЕНТГЕНОЗАЩИТНОЕ ПОКРЫТИЕ 2003
  • Кушникова Регина Всеволодовна
  • Кадырова Галлия Рахимгиреевна
  • Назарова Елена Савельевна
  • Пряникова Галина Федоилевна
  • Капитанов Константин Автономович
  • Никитин Владимир Михайлович
  • Коршунова Гульзара Хамитовна
  • Быкова Эмма Валеевна
RU2281572C2
US 20050258404 A1, 24.11.2005.

RU 2 768 360 C1

Авторы

Бочкарев Михаил Николаевич

Бухвалова Светлана Юрьевна

Асмолова Нина Федоровна

Даты

2022-03-24Публикация

2021-08-19Подача