Изобретение относится к пластичным смазкам на синтетической основе для работы различных узлов трения механизмов в широком температурном интервале.
Известна пластичная смазка (Патент RU 2160766, МПК: С10М 115/08, C10N 30/06, 2000), содержащая нефтяное и/или синтетическое масло и 5 - 25% масс, полимочевинного загустителя, полученного путем взаимодействия октадециламина, анилина и полиизоцианата, в котором массовая доля изоцианатных групп составляет 35 - 38%. Данная пластичная смазка находит применение в узлах трения машин и механизмов, работающих в условиях повышенной температуры, высоких нагрузок и скоростей и в контакте с агрессивными средами. Однако к недостаткам данного изобретения относятся неудовлетворительные трибологические свойства, а также ограниченный низкотемпературный предел применения (до минус 30°С).
Известна пластичная смазка, предназначенная для использования в условиях повышенных температур, высоких знакопеременных нагрузок и скоростей и в контакте с перегретым водяным паром (Патент RU №2295558, МПК С10М 119/24, 2005). Смазка содержит нефтяное или синтетическое масла, а в качестве загустителя - полимочевину на основе полиизоцианата с массовым содержанием изоцианатных групп от более 31,5 до 33,6%. Пластичная смазка характеризуется неудовлетворительными низкотемпературными свойствами и может применяться при температурах выше минус 30°С.
Также известна смазка, полученная на основе углеводородной дисперсионной среды, в качестве которой использованы полиалкилбензол или его смесь с нефтяным маслом при следующем соотношении компонентов: полиалкилбензол - 5-100% масс., нефтяное масло - 0-95% масс; и полимочевины (6-15% масс) (Патент RU №2524691, МПК С10М 159/04, 2012). Смазка используется как многоцелевая и низкотемпературная с длительным сроком действия в интервале температур от минус 50 до +150°С. Однако недостатком данной смазки является высокое значение эффективной вязкости при отрицательных температурах (при температуре минус 50°С и градиенте скорости деформации 10 с-1 вязкость > 3000 Па⋅с).
Известна многоцелевая низкотемпературная смазка для узлов трения, работающих в диапазоне температур от минус 60 до +150°С, и может быть использована в нефтеперерабатывающей и нефтехимической отраслях промышленности, так как характеризуется повышенными реологическими характеристиками и окислительной стабильностью (Патент RU №2665042, МПК: С10М 101/02, С10М 119/24, С10М 133/12, 2017). В состав смазки входит масло для производства химических волокон с кинематической вязкостью при температуре 50°С не более 9 мм2/с, полимочевинный загуститель на основе полиизоцианата с содержанием изоцианатных групп от 29,0 до 31,0%, а также антиокислители аминного и фенольного типа. Однако смазка характеризуется низкой коллоидной стабильностью.
Известна биоразлагаемая пластичная смазка (JP №2016-89040, МПК: С10М 105/32, С10М 115/08, С10М 169/02, 2016), которая содержит сложноэфирное базовое масло с вязкостью 60-160 мм2/с при 40°С и полимочевинный загуститель (7÷11% масс.), полученный путем взаимодействия 4,4'- дифенилметандиизоцианата и смеси циклических аминов, содержащих от 4 до 8 атомов углерода, и алифатических аминов, содержащих 20-24 атома углерода, взятых в соотношении от 7:3 до 9:1. Смазка предназначена для использования при работе ветровых генераторов. Применение смазки в высокоскоростных и тяжелонагруженных узлах трения и открытых зубчатых передачах ограничено вследствие мягкой консистенции (1-2 класс NLGI), кроме этого она застывает при температуре минус 40°С.
Также известна низкотемпературная экологичная пластичная смазка, которую предлагается использовать для смазывания тяжело-нагруженных механизмов, работающих в широком диапазоне скоростей и механических нагрузок в интервале температур от минус 60 до 200°С (Патент RU №2713451, МПК: С10М 119/20, С10М 119/24, С10М 171/06, 2019). Смазка содержит базовое сложноэфирное масло, полимочевину на основе ароматического полиизоцианата и жирного амина или смеси жирного амина и этилендиамина, а также в качестве второго загустителя нанофибриллярную целлюлозу со средним диаметром фибрилл от 10 до 700 нм и длиной до 1 мкм, диспергированную в сложноэфирном масле. Смазка дополнительно может содержать цетеариловый спирт в количестве 1-5% масс. К недостаткам относится необходимость проведения переосаждения нанофибриллярной целлюлозы с последовательной сменой дисперсионной среды для ее диспергирования в среде базового сложноэфирного масла.
Наиболее близкой к заявляемому изобретению и взятой за прототип является смазка на синтетической основе, представленной смесью эфиров пентаэритрита и жирных кислот фракции С5-С9 с кремнийорганической жидкостью или с полиальфаолефиновым маслом, в которой в качестве загустителя предлагается использовать полимочевину (5,8-12,0% масс.) - продукт взаимодействия октадециламина, анилина и полиизоцианата, а также дополнительно гидрофобный силикагель (0,1-5,0% масс.) (Патент RU №2535210, МПК: С10М 169/02, С10М 119/24, C10N 30/06, 2013). Характеризуясь улучшенными трибологическими и диэлектрическими свойствами, данная смазка находит применение в низковольтной и слаботочной аппаратуре. Прототип отличается узкой областью эксплуатации, а также имеет ограничение в применении при температуре ниже минус 50°С.
Задачей предлагаемого изобретения является подбор оптимального компонентного состава пластичной смазки, позволяющего повысить структурно-механические характеристики смазки, улучшить ее коллоидную стабильность и смазывающие свойства, а также расширить температурный интервал работоспособности смазки от минус 70 до 250°С.
Поставленная задача решается тем, что предлагается универсальная пластичная смазка на синтетической основе, в качестве которой использована композиция кремнийорганической жидкости и сложного эфира в сочетании с загустителем в виде полимочевины, отличающаяся тем, что в качестве кремнийорганической жидкости использована олигометилэтилсилоксановая жидкость, а в качестве сложного эфира использован ди-2-этилгексиловый эфир себациновой кислоты, взятые в соотношении от 50:50 до 60:40, соответственно, в присутствии загустителя, который содержит димочевину, представляющую собой продукт взаимодействия анилина, додециламина и 2,4-толуилендиизоцианата, гидрофобный модифицированный аэросил и церезин 75 при следующем соотношении компонентов, % масс: димочевина 10,0-21,0; аэросил 3,0-7,0; церезин 3,0-5,0.
Олигометилэтилсилоксановая жидкость сочетает в себе положительные свойства как метилсилоксановых, так и этилсилоксановых жидкостей. Она хорошо совмещается с минеральными маслами и синтетическими углеводородами, нетоксична, отличается высокой термоокислительной и химической стабильностью, имеют низкую температуру застывания и пологую вязкостно-температурную характеристику. В свою очередь, ди-2-этилгексиловый эфир себациновой кислоты характеризуется высокой стабильностью при повышенных температурах, более высокими противоизносными характеристиками по сравнению с нефтяными маслами, что делает его потенциально работоспособным при перепадах температур в узлах трения и внешней среде. Выбранное соотношение компонентов обусловлено проявлением синергетического эффекта улучшения смазывающих свойств системы при данной концентрации.
В качестве загустителя смазка содержит комплекс веществ, а именно, димочевину, представляющую собой продукт взаимодействия анилина, додециламина и 2,4-толуилендиизоцианата, а также дополнительно гидрофобный модифицированный аэросил и церезин 75.
Полимочевинные загустители обладают хорошей антиокислительной и механической стабильностью, устойчивостью к воде, к химически агрессивным средам, сохраняют смазывающие свойства при длительной работе в широком температурном интервале. Стабильные смазки с более высокими эксплуатационными характеристиками получают на основе ароматических димочевин, в которых присутствуют как ароматические, так и алифатические радикалы. Поэтому в качестве исходных компонентов димочевинного загустителя выбраны анилин, додециламин и 2,4-толуилендиизоцианат.
Однако загущение олигоорганосилоксанов полимочевинами затруднено, поэтому для получения пластичных смазок в качестве дисперсной фазы дополнительно использованы гидрофобный модифицированный аэросил и церезин с температурой плавления 75°С. Смазки на неорганических загустителях обладают хорошими высокотемпературными свойствами и химической стабильностью. Введение с состав смазки церезина, позволяет повысить химическую, коллоидную стабильность и влагоустойчивость. Так, выбранные типы загустителей позволяют получить смазки с широким спектром эксплуатационных характеристик.
Состав смазки включает следующие компоненты, % масс.:
Для получения смазки используют:
Олигометилэтилсилоксановая жидкость по ТУ 6-02-1-041-92;
Ди-2-этилгексиловый эфир себациновой кислоты по ГОСТ 19096-73;
Анилин по ГОСТ 5819-78;
Аэросил марки АМ-1-300 по ТУ 6-18-185-79;
Церезин 75 по ГОСТ 2488-79.
Предлагаемую пластичную смазку получают следующим способом.
1) В емкостном реакторе с мешалкой готовят дисперсионную среду путем смешивания олигометилэтилсилоксановой жидкости с ди-2-этилгексиловым эфиром себациновой кислоты.
2) К 1/3 полученной композиции добавляют расчетное количество 2,4-толуилендиизоцианата, нагревают до 75°С и перемешивают в течение 15-20 мин.
3) К оставшимся 2/3 частям дисперсионной среды добавляют аэросил и перемешивают до получения однородной массы. Далее при перемешивании вводят додециламин, анилин и церезин, последовательно растворяя каждый компонент в композиции при нагревании.
4) Полученную реакционную массу, нагретую до 90°С, совмещают с композицией, содержащей 2,4-толуилендиизоцианат, продолжая перемешивание, выдерживают при температуре 130-135°С в течение 15-20 мин.
5) После этого смазку охлаждают и пропускают через металлическую сетку с размером стороны ячейки 0,2-0,4 мм.
По приведенной технологии были приготовлены 7 образцов пластичной смазки с различным составом, где в качестве дисперсионной среды использована композиция олигометилэтилсилоксановая жидкость - ди-2-этилгексиловый эфир себациновой кислоты при соотношении компонентов 60:40 (табл. 1. «Составы приготовленных образцов пластичной смазки и их свойства»).
На основании анализа зависимости свойств пластичных смазок от содержания загустителей был выбран компонентный состав, оптимально сбалансированный по количественным характеристикам (табл. 2. «Компонентный состав заявленной пластичной смазки»).
Характеристики полученного образца смазки с данным составом представлены в таблице 3 («Характеристики образца заявленной пластичной смазки»).
Полученные результаты позволяют судить о достаточно высоких показателях предела прочности при сдвиге, что характеризует ее способность удерживаться на поверхностях. Значение эффективной вязкости при минус 70°С и температура каплепадения указывают на широкий температурный диапазон применения данной пластичной смазки, который может варьироваться от минус 70 до 250°С, так как за минимальную температуру применения принимают температуру, при которой вязкость смазки составляет 2000 Па⋅с. При выбранном соотношении загустителей пластичная смазка обладает хорошими смазывающими свойствами при удовлетворительной коллоидной стабильности. Заявленный образец пластичной смазки по значению пенетрации относится к 3 классу NLGI, что позволяет применять ее в средне- и тяжелонагруженных подшипниках, а также в высокоскоростных подшипниках.
Полученные данные подтверждают, что предлагаемая пластичная смазка имеет оптимальный состав, характеристики которого не уступают, а по ряду показателей превосходят пластичные смазки данного типа, при этом расширяется температурный интервал применения от минус 70 до 250°С. Благодаря выбранным соотношениям компонентов достигнут технический результат - повышение эффективности смазки, а также расширение температурного интервала ее работоспособности от минус 70 до 250°С.
название | год | авторы | номер документа |
---|---|---|---|
РАДИАЦИОННО СТОЙКАЯ ПЛАСТИЧНАЯ СМАЗКА | 2022 |
|
RU2793583C1 |
ПЛАСТИЧНАЯ СМАЗКА НА СИНТЕТИЧЕСКОЙ ОСНОВЕ (ВАРИАНТЫ) И СПОСОБ ЕЕ ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2023 |
|
RU2807916C1 |
НИЗКОТЕМПЕРАТУРНАЯ ЭКОЛОГИЧНАЯ ПЛАСТИЧНАЯ СМАЗКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2019 |
|
RU2713451C1 |
ПЛАСТИЧНАЯ СМАЗКА ДЛЯ СЛАБОТОЧНЫХ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ | 2013 |
|
RU2535210C1 |
БИОРАЗЛАГАЕМАЯ НИЗКОТЕМПЕРАТУРНАЯ ПЛАСТИЧНАЯ СМАЗКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2019 |
|
RU2704968C1 |
НИЗКОТЕМПЕРАТУРНАЯ КОНСИСТЕНТНАЯ СМАЗКА | 2018 |
|
RU2697057C1 |
ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ВЫСОКОСКОРОСТНЫХ РАДИАЛЬНО-УПОРНЫХ ПОДШИПНИКОВ ДЛЯ ГИРОСКОПОВ И СИНХРОННЫХ ГИРОМОТОРОВ | 2011 |
|
RU2476588C2 |
ПЛАСТИЧНАЯ СМАЗКА | 2005 |
|
RU2295558C1 |
ПЛАСТИЧНАЯ СМАЗКА | 1989 |
|
RU1623187C |
ПЛАСТИЧНАЯ СМАЗКА С ПОВЫШЕННОЙ РАБОТОСПОСОБНОСТЬЮ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2012 |
|
RU2524691C2 |
Настоящее изобретение относится к смазочным материалам, в частности к пластичным смазкам, которые могут применяться для обеспечения работы различных узлов трения механизмов в широком интервале температур. Предложена универсальная пластичная смазка на синтетической основе, в качестве которой использована композиция кремнийорганической жидкости и сложного эфира в сочетании с загустителем в виде полимочевины, отличающаяся тем, что в качестве кремнийорганической жидкости использована олигометилэтилсилоксановая жидкость, а в качестве сложного эфира использован ди-2-этилгексиловый эфир себациновой кислоты, взятые в соотношении от 50:50 до 60:40 соответственно, в присутствии загустителя, который содержит димочевину, представляющую собой продукт взаимодействия анилина, додециламина и 2,4-толуилендиизоцианата, гидрофобный модифицированный аэросил и церезин 75 при следующем содержании компонентов, % масс.: димочевина 10,0-21,0; аэросил 3,0-7,0; церезин 3,0-5,0. Техническим результатом настоящего изобретения является разработка оптимального состава смазки, улучшение ее смазывающих свойств и расширение рабочего температурного диапазона от -70 до +250°С. 3 табл.
Универсальная пластичная смазка на синтетической основе, в качестве которой использована композиция кремнийорганической жидкости и сложного эфира в сочетании с загустителем в виде полимочевины, отличающаяся тем, что в качестве кремнийорганической жидкости использована олигометилэтилсилоксановая жидкость, а в качестве сложного эфира использован ди-2-этилгексиловый эфир себациновой кислоты, взятые в соотношении от 50:50 до 60:40 соответственно, в присутствии загустителя, который содержит димочевину, представляющую собой продукт взаимодействия анилина, додециламина и 2,4-толуилендиизоцианата, гидрофобный модифицированный аэросил и церезин 75 при следующем содержании компонентов, % масс.: димочевина 10,0-21,0; аэросил 3,0-7,0; церезин 3,0-5,0, при этом рабочий температурный интервал смазки составляет от -70 до +250°С.
ПЛАСТИЧНАЯ СМАЗКА ДЛЯ СЛАБОТОЧНЫХ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ | 2013 |
|
RU2535210C1 |
НИЗКОТЕМПЕРАТУРНАЯ ЭКОЛОГИЧНАЯ ПЛАСТИЧНАЯ СМАЗКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2019 |
|
RU2713451C1 |
МНОГОЦЕЛЕВАЯ НИЗКОТЕМПЕРАТУРНАЯ ПЛАСТИЧНАЯ СМАЗКА | 2017 |
|
RU2665042C1 |
ПЛАСТИЧНАЯ СМАЗКА С ПОВЫШЕННОЙ РАБОТОСПОСОБНОСТЬЮ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2012 |
|
RU2524691C2 |
DE 19747113 A1, 30.04.1998 | |||
Устройство для определения азимутального и зенитного углов скважины | 1983 |
|
SU1090862A1 |
US 2011046030 A1, 24.02.2011. |
Авторы
Даты
2022-04-05—Публикация
2021-04-23—Подача