СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКОГО ОБРАЗЦА ДЛЯ ИССЛЕДОВАНИЯ МЕТОДОМ СКАНИРУЮЩЕЙ ЗОНДОВОЙ НАНОТОМОГРАФИИ Российский патент 2022 года по МПК G01N1/36 G01N23/46 

Описание патента на изобретение RU2769836C2

Изобретение относится к области нанотехнологии и может быть использовано для получения биологических образцов для исследований методом сканирующей зондовой нанотомографии (СЗНТ).

Известен способ получения биологических образцов для исследований методом СЗНТ, включающий дегидратацию образцов с последующей заливкой в пластиковой ячейке для заливки образцов в полимерную среду, представляющую собой смесь смол с дальнейшей полимеризацией до твердого состояния [Luft J Н., Improvements in ероху resin embedding methods. The Journal of biophysical and biochemical cytology, vol. 9,2 (1961): 409-14. doi:10.1083/jcb.9.2.409]. После отвердевания полимерной среды образец отделяют от ячейки и исследуют методом СЗНТ.

Недостаток этого способа заключается в том, что в процессе отвердевания образец может оседать на дно ячейки, что может приводить к повреждению образца при отделении от поверхности ячейки, а, следовательно, к нарушению его структуры. Некоторые разновидности биологических образцов, такие как микроносители, микрочастицы, суспензии, необходимо позиционировать на подложках для их концентрирования в процессе получения образца, однако известный способ не включает в себя использование такой подложки.

Для исследования биологических образцов клеток зачастую необходимо адгезировать их на поверхности посуды для культивирования клеток, а затем производить заливку в полимерную среду.

Однако в этом случае для каждой задачи необходимо подбирать посуду, которая не будет разрушаться от воздействия дегидратирующих агентов, но в то же время будет позволять осуществление всех необходимых манипуляций при культивировании и заливке в полимерную среду, а также позволять отделение залитого образца от поверхности посуды без возможности его повреждений.

Это приводит к многостадийности процесса получения биологического образца, что может привести к гибели клеток в составе биологического образца или образованию артефактов в ходе заливки в полимерную среду и получению недостоверных данных в ходе анализа.

Техническая проблема заключается в необходимости создания универсальной и механически прочной подложки для заливки биологических образцов в полимерную среду, которая может обеспечивать как правильное позиционирование биологических образцов в процессе заливки, так и адгезию биологических образцов и структур в их составе.

Технический результат, достигаемый при осуществлении изобретения, заключается в

- сокращении времени получения биологического образца для исследований методом СЗНТ за счет сокращения манипуляций путем использования оригинальной подложки при заливке биологических образцов в полимерную среду;

- сохранении целостности и структуры биологического образца за счет обеспечения его адгезии в процессе заливки в полимерную среду путем использования оригинальной подложки, обладающей необходимым запасом механической прочности;

- обеспечении достаточного уровня биосовместимости подложки для получения образцов клеток млекопитающего за счет возможности культивирования клеток на подложке.

Сущность изобретения заключается в следующем.

Заливку биологического образца в полимерную среду проводят на подложке в виде пленки из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащей 5-100% фиброина шелка по массе.

Существует вариант, в котором пленка из фиброина шелка дополнительно содержит добавку в количестве до 95% по массе.

Существует вариант, в котором для получения биологического образца, содержащего клетки млекопитающего, их предварительно культивируют на подложке в виде пленки из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащей 5-100% фиброина шелка по массе.

Изобретение поясняются следующими фигурами.

На Фиг. 1 изображена подложка из фиброина шелка, полученная методом полива водного раствора фиброина шелка на поверхности полированного тефлона.

На Фиг. 2 изображена подложка из фиброина шелка, покрытая раствором коллагена, иммобилизованная на поверхности пластика.

На Фиг. 3 представлено изображение гепатоцита, полученное методом сканирующей зондовой микроскопии, адгезированного на подложке из фиброина шелка, полученное методом сканирующей зондовой микроскопии (СЗМ), размер скана 32×15 мкм2, диапазон вариации высоты 40 нм, размерный отрезок 4 мкм, стрелкой указана подложка из фиброина шелка.

На Фиг. 4 представлена трехмерная СЗНТ-реконструкция гепатоцита, адгезированного на подложке из фиброина шелка, 32.0×15.0×2.8 мкм3, толщина среза 200 нм, размерный отрезок 5 мкм.

Способ получения биологического образца для исследований методом СЗНТ осуществляется следующим образом.

Заливку биологических образцов в полимерную среду производят на подложке в виде пленки из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащей 5-100% фиброина шелка по массе (фиг. 1). Для этого в пластиковую ячейку для заливки помещают пленку из фиброина шелка, проводят дегидратацию биологического образца и заливку в полимерную среду.

Кроме этого существует вариант, в котором пленка из фиброина шелка дополнительно содержит добавку в количестве до 95% по массе. Для этого в состав пленки из фиброина шелка вводят добавку путем введения в раствор фиброина шелка, из которого получают пленку, этого вещества в сухом виде или в виде раствора и перемешивают, например, с помощью автоматической пипетки или магнитной мешалки. Затем из раствора получают пленку, которую помещают в пластиковую ячейку для заливки и проводят дегидратацию биологического образца и заливку в полимерную среду. В качестве добавки могут быть использованы, например, вещества, повышающие адгезию клеток (коллаген - фиг. 2, желатин, фибронектин и др.), вещества, регулирующие скорость деградации (хитозан, поликапролактон и др.), добавки, изменяющие пористость и шероховатость пленки (микрочастицы, наночастицы и др.), различные низкомолекулярные вещества (соли, оксиды и др.).

Кроме этого существует вариант, в котором для получения биологических образцов, содержащих клетки млекопитающего, их предварительно культивируют на подложке из фиброина шелка. Для этого пленку из фиброина шелка размещают на поверхности посуды для культивирования клеток или помещают в среду инкубации.

Перед выполнением исследований методом СЗНТ могут быть осуществлены предварительные срезы полученного биологического образца в требуемой плоскости при помощи ультрамикротома. Толщина срезов может лежать в диапазоне от 10 до 1000 нм. Полученные срезы и поверхность образца могут быть также исследованы с применением методов сканирующей зондовой оптической нанотомографии (как показано, например, в RU 2680726, С1), сканирующей зондовой микроскопии, электронной и флуоресцентной оптической микроскопии.

Образец для исследования методом СЗНТ получали следующим образом.

Подложку на основе фиброина шелка получали на поверхности чашки Петри диаметром 5 см. Для этого выделяли фиброин шелка из шелковых нитей 4-0 (Моснитки, Россия). Навеску шелка из нитей массой 1 г кипятили на водяной бане в 500 мл бидистиллированной воды с добавлением 1260 мг соды в течение 40 минут. Затем промывали 3,6 л дистиллированной воды. Далее трижды кипятили в 500 мл бидистиллированной воды 30 минут, промывая 3,6 л дистиллированной воды после каждого кипячения. Очищенный фиброин шелка сушили на воздухе при комнатной температуре. Далее получали водный раствор фиброина шелка. Для этого в раствор, приготовленный из расчета 389 мг CaCl2, 388 мкл C2H5OH и 544 мкл H2O на 1 мл раствора, вносили навеску фиброина массой 130 мг/мл. Нагревали на водяной бане при 40°С в течение 4 часов. После чего производили диализ раствора против бидистиллированной воды, в данном примере было проведено 5 смен диализа по 30 минут. Полученный после диализа водный раствор фиброина шелка наносили на дно чашки Петри и высушивали при комнатной температуре. Высушенный фиброин шелка растворяли в муравьиной кислоте из расчета 20 мг/мл при нагревании до 40°С на водяной бане в течение 30 минут. Полученный раствор наносили на дно чашек Петри диаметром 5 см из расчета 5 мл на чашку и высушивали в течение двух суток при комнатной температуре. После высыхания раствора фиброина шелка на дно чашки Петри наносили по 1 мл раствора фибронектина с концентрацией 10 мкг/мл для повышения адгезии клеток и высушивали в течение двух суток при комнатной температуре.

Таким образом, получали подложку толщиной 1 мкм для подготовки образца гепатоцитов крысы породы Wistar. В чашке Петри с подложкой проводили выделение первичной культуры гепатоцитов крысы породы Wistar. Изолированные гепатоциты инкубировали в термостате при температуре 37°С и 5% углекислого газа в течение 24 часов. Затем проводили заливку образцов в полимерную среду (эпоксидную смолу). Для этого из чашки Петри отбирали среду инкубации и производили две короткие отмывки стерильным 0,9% раствором хлорида натрия. После этого в чашку Петри вносили 2,5% раствор глутарового альдегида в натрий-фосфатном буфере (рН=7,4) и инкубировали в течение 2 часов в темноте при +4°С и двукратно отмывали стерильным 0,9% раствором хлорида натрия. Затем производили дегидратацию гепатоцитов проводкой по спиртам с увеличивающейся концентрацией по схеме:

а) р-р этанола 30% - 10 мин;

б) р-р этанола 50% - 10 мин;

в) р-р этанола 70% - 10 мин;

г) р-р этанола 80% - 10 мин;

д) р-р этанола 96% - 10 мин.

Образец отмывали трехкратно 100% этиловым спиртом по 10 минут, а затем инкубировали в смеси 100% этилового спирта и эпоксидной смолы в соотношении 1:1 в течение 30 минут, после чего образец переносили в смесь 100% этилового спирта и эпоксидной смолы в соотношении 1:2 и инкубировали в течение 30 минут. Для заливки образцов использовалась эпоксидная среда (Ероху Embedding Medium kit, Sigma-Aldrich, Cat. №45359-1EA-F). Образец заключали в эпоксидную среду, инкубировали в термостате при 45°С в течение 24 часов, после чего продолжали инкубацию в течение 72 часов при температуре 60°С. Затем образец гепатоцитов на подложке в эпоксидной смоле отделяли от дна чашки Петри с помощью скальпеля.

После отделения залитых в эпоксидную среду образцов клеток выполнялась локализация гепатоцитов с помощью флуоресцентного микроскопа. Затем выполнялись первичные срезы образца ультрамикротомом в плоскости, перпендикулярной плоскости образца и при помощи флуоресцентной микроскопии измерялось расстояние от плоскости среза до изучаемого скаффолда. В соответствии с выполненными измерениями производилась последовательность срезов образца контролируемой толщины.

На фиг. 3 приведено изображение образца гепатоцита, полученное методом сканирующей зондовой микроскопии, стрелка указывает на подложку из фиброина шелка. Для оценки трехмерной морфологии гепатоцита, адгезированного на подложке из фиброина шелка в виде пленки была выполнена трехмерная реконструкция фрагмента клетки при помощи метода СЗНТ. Для этого было выполнено 14 последовательных срезов образца толщиной 200 нм и получено 14 последовательных СЗМ-изображений участка скаффолда размером 32×16 мкм2. Полученная визуализация трехмерной структуры гепатоцита показана на фиг. 4.

Таким образом, предлагаемый способ позволяет обеспечить правильное позиционирование биологического образца в процессе заливки и адгезию биологических структур в его составе при значительном сокращении количества манипуляций с биологическим образцом и сохранении его целостности.

Похожие патенты RU2769836C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКОГО ОБРАЗЦА ДЛЯ ИССЛЕДОВАНИЙ МЕТОДОМ СКАНИРУЮЩЕЙ ЗОНДОВОЙ НАНОТОМОГРАФИИ 2020
  • Агапов Игорь Иванович
  • Агапова Ольга Игоревна
  • Боброва Мария Михайловна
  • Сафонова Любовь Александровна
  • Ефимов Антон Евгеньевич
RU2766727C2
ПОДЛОЖКА ДЛЯ ИССЛЕДОВАНИЯ БИОЛОГИЧЕСКОГО ОБРАЗЦА МЕТОДОМ СКАНИРУЮЩЕЙ ЗОНДОВОЙ НАНОТОМОГРАФИИ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2020
  • Агапов Игорь Иванович
  • Агапова Ольга Игоревна
  • Боброва Мария Михайловна
  • Сафонова Любовь Александровна
  • Ефимов Антон Евгеньевич
RU2740872C1
МИКРОНОСИТЕЛЬ ДЛЯ КЛЕТОК НА ОСНОВЕ НАТУРАЛЬНОГО ШЕЛКА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Агапов Игорь Иванович
  • Агапова Ольга Игоревна
  • Боброва Мария Михайловна
  • Сафонова Любовь Александровна
  • Ефимов Антон Евгеньевич
RU2732598C1
СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМЫХ СКАФФОЛДОВ ИЗ ФИБРОИНА ШЕЛКА С УЛУЧШЕННЫМИ БИОЛОГИЧЕСКИМИ СВОЙСТВАМИ 2017
  • Агапов Игорь Иванович
  • Агапова Ольга Игоревна
  • Ефимов Антон Евгеньевич
  • Боброва Мария Михайловна
  • Сафонова Любовь Александровна
RU2683557C1
Композиция для изготовления биодеградируемых скаффолдов и способ ее получения 2017
  • Агапов Игорь Иванович
  • Агапова Ольга Игоревна
  • Ефимов Антон Евгеньевич
  • Боброва Мария Михайловна
  • Сафонова Любовь Александровна
RU2684769C1
СРЕДСТВО, ОБЛАДАЮЩЕЕ НЕЙРОПРОТЕКТОРНЫМИ СВОЙСТВАМИ В ЭКСПЕРИМЕНТЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Сидорова Мария Владимировна
  • Киселева Екатерина Владимировна
  • Горбачева Любовь Руфэльевна
  • Струкова Светлана Михайловна
  • Мойсенович Михаил Михайлович
  • Агапов Игорь Иванович
  • Гончаренко Анна Владимировна
  • Архипова Анастасия Юрьевна
  • Котлярова Мария Сергеевна
  • Рамонова Алла Аликовна
RU2614694C1
СПОСОБ ФОРМИРОВАНИЯ БИОРЕЗОРБИРУЕМЫХ ФИБРОИНОВЫХ ПЛЕНОК С ИСПОЛЬЗОВАНИЕМ МЕТАКРИЛИРОВАННОГО ЖЕЛАТИНА 2016
  • Мойсенович Михаил Михайлович
  • Агапов Игорь Иванович
  • Архипова Анастасия Юрьевна
  • Бессонов Иван Викторович
  • Копицына Мария Николаевна
  • Мойсенович Анастасия Михайловна
  • Гончаренко Анна Владимировна
  • Котлярова Мария Сергеевна
RU2645200C1
СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМОГО КОМПОЗИТНОГО МАТРИКСА НА ОСНОВЕ РЕГЕНЕРИРОВАННОГО ФИБРОИНА ШЕЛКА Bombyx mori И ЕГО ПРИМЕНЕНИЕ 2012
  • Агапов Игорь Иванович
  • Мойсенович Михаил Михайлович
RU2483756C1
ФУНКЦИОНАЛЬНЫЙ БИОЛОГИЧЕСКИ АКТИВНЫЙ ПРОДУКТ (ВАРИАНТЫ) И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2011
  • Агапов Игорь Иванович
  • Мойсенович Михаил Михайлович
  • Казюлина Анастасия Александровна
  • Богословский Василий Васильевич
RU2446711C1
СПОСОБ ФОРМИРОВАНИЯ БИОРЕЗОРБИРУЕМЫХ ТРЕХМЕРНЫХ СТРУКТУР 2017
  • Архипова Анастасия Юрьевна
  • Рамонова Алла Аликовна
  • Мойсенович Михаил Михайлович
  • Бессонов Иван Викторович
  • Копицына Мария Николаевна
  • Машков Александр Евгеньевич
  • Федулов Александр Владимирович
  • Солдатенко Анна Сергеевна
  • Шайтан Константин Вольдемарович
RU2691752C1

Иллюстрации к изобретению RU 2 769 836 C2

Реферат патента 2022 года СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКОГО ОБРАЗЦА ДЛЯ ИССЛЕДОВАНИЯ МЕТОДОМ СКАНИРУЮЩЕЙ ЗОНДОВОЙ НАНОТОМОГРАФИИ

Изобретение относится к области нанотехнологии и может быть использовано для получения биологических образцов для исследований методом сканирующей зондовой нанотомографии (СЗНТ). Способ получения биологического образца для исследования методом сканирующей зондовой нанотомографии включает заливку биологического образца в полимерную среду. При этом заливку биологического образца проводят на подложке в виде пленки из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащей 5-100% фиброина шелка по массе. Изобретение обеспечивает сокращение времени получения биологического образца для исследований методом СЗНТ за счет сокращения манипуляций путем использования оригинальной подложки при заливке биологических образцов в полимерную среду; сохранение целостности и структуры биологического образца за счет обеспечения его адгезии в процессе заливки в полимерную среду путем использования оригинальной подложки, обладающей необходимым запасом механической прочности; обеспечение достаточного уровня биосовместимости подложки для получения образцов клеток млекопитающего за счет возможности культивирования клеток на подложке. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 769 836 C2

1. Способ получения биологического образца для исследования методом сканирующей зондовой нанотомографии, включающий заливку биологического образца в полимерную среду, отличающийся тем, что заливку биологического образца проводят на подложке в виде пленки из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащей 5-100% фиброина шелка по массе.

2. Способ по п. 1, отличающийся тем, что для получения биологического образца, содержащего клетки млекопитающего, их предварительно культивируют на подложке в виде пленки из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащей 5-100% фиброина шелка по массе.

Документы, цитированные в отчете о поиске Патент 2022 года RU2769836C2

СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ НА ОСНОВЕ ФИБРОИНА ШЕЛКА ДЛЯ ИЗГОТОВЛЕНИЯ КОНТАКТНЫХ ЛИНЗ 2010
  • Сашина Елена Сергеевна
  • Голубихин Антон Юрьевич
  • Новоселов Николай Петрович
RU2443805C1
ЕФИМОВ А.Е
ТРЕХМЕРНЫЙ АНАЛИЗ МИКРО- И НАНОСТРУКТУРЫ БИОМАТЕРИАЛОВ, КЛЕТОК И ТКАНЕЙ МЕТОДОМ СКАНИРУЮЩЕЙ ЗОНДОВОЙ НАНОТОМОГРАФИИ / Диссертация на соиск
уч
степ
д.б.н., Москва, 2018
САФОНОВА Л.А
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 769 836 C2

Авторы

Агапов Игорь Иванович

Агапова Ольга Игоревна

Боброва Мария Михайловна

Сафонова Любовь Александровна

Ефимов Антон Евгеньевич

Даты

2022-04-06Публикация

2020-07-27Подача