Область техники, к которой относится изобретение
Изобретение относится к кабельной технике, а именно к конструкциям оптических микрокабелей, предназначенных для использования в составе систем дистанционного управления подвижными объектами (например, необитаемыми подводными аппаратами).
Уровень техники
В качестве наиболее близкого аналога выбран известный оптический миниатюрный кабель для внутри и межблочного монтажа, содержащий три оптических волокна, смазанных гидрофобным гелем, в полимерной оболочке из эпоксиакрилатной смолы (патент на полезную модель РФ № 150288 от 29.12.2014). Недостатком известного кабеля является недостаточная механическая прочность как по всей разматываемой длине, так и на начальном участке при размотке и в месте крепления оптического соединителя (коннектора), не допускающая рывков при движении управляемого объекта (в первую очередь, при запуске подвижного объекта), поскольку данный кабель не предназначен для систем дистанционного управления и высокоскоростной размотки.
Сущность изобретения
Изобретение решает задачу улучшения эксплуатационных показателей оптических кабелей, подвергающихся высокоскоростной размотке, и увеличения дальности управляемого перемещения подвижного объекта.
Достигаемый технический результат состоит в том, что оптический микрокабель имеет в своем составе участок с дополнительной защитой, обладающий высокой прочностью, при сохранении или улучшении массогабаритных характеристик и увеличении за счёт этого строительной длины микрокабеля, которая может быть размещена на движущемся объекте.
Указанный технический результат достигается тем, что протяженный оптический микрокабель, содержащий, по меньшей мере, одно оптическое волокно с плотным вторичным защитным покрытием (плотным буфером), поверх которого на конечном участке, например, длиной около 100 метров, наложены упрочняющие нити (например, арамидные) и слой УФ-отверждаемого полиакрилата, при этом упомянутые нити (волокна) оказываются внедренными в упомянутый слой УФ-отверждаемого полиакрилата, а упомянутый слой УФ-отверждаемого полиакрилата имеет хорошую адгезию к оболочке микрокабеля (плотному вторичному защитному покрытию).
Отличительной особенностью настоящего изобретения является наличие у оптического кабеля упрочненного начального участка, выполненного единой строительной длиной с микрокабелем (без каких-либо соединений), обладающего повышенной прочностью к рывку при движении объекта.
Краткое описание фигур чертежей
На Фиг.1 показано поперечное сечение кабеля.
На Фиг. 2 показан отрезок кабеля с упрочненным участком
Осуществление изобретения
Оптические волокна используются не только в стационарных, но и в подвижных объектах, например, подводных аппаратах, транспортных средствах, производственном оборудовании с подвижными частями и пр. Расстояния, на которых требуется обеспечить связь с объектом, могут достигать нескольких десятков километров. Для таких объектов оптический кабель плотно наматывают на катушку с малыми диаметром намотки или сматывают другим способом, но так, чтобы кабель мог легко разматываться с большой скоростью без запутывания витков. Кабель размещают на подвижном объекте. По мере движения объекта кабель разматывается, обеспечивая постоянную связь подвижного объекта с базовым объектом. Учитывая, что на подвижном объекте пространство для размещения кабеля ограничено, протяженность размещаемого кабеля зависит от его диаметра. Чем меньше диаметр, тем большую длину кабеля можно разместить на подвижном объекте. Таким образом, дальность управляемого перемещения объекта зависит от размеров кабеля. При этом возможность минимизации массогабаритных характеристик кабеля ограничена необходимостью обеспечить его стойкость к механическим нагрузкам в процессе эксплуатации. Практика показывает, что наибольшие механические нагрузки на кабель воздействуют в начальный момент движения объекта.
Настоящее изобретение решает проблему увеличения размещаемой на подвижном объекте длины микрокабеля и, как следствие, увеличения дальности управляемого перемещения объекта, за счет создания оптического микрокабеля с упрочненным участком.
Оптический кабель содержит, по меньшей мере, одно оптическое волокно 1 с защитным покрытием 2. Поскольку оптический микрокабель должен обладать минимальными габаритами, обычно число оптических волокон не превышает четырех. На Фиг.1 показан вариант исполнения кабеля с тремя оптическими волокнами. В зависимости от задач управления оптический микрокабель в соответствии с настоящим изобретением может включать от одного до четырех волокон. Для исключения проскальзывания элементов микрокабеля друг относительно друга и повышения монолитности конструкции целесообразно не применять смазку оптических волокон.
Оптическое волокно может иметь диаметр по первичному защитному покрытию от 180 до 260 мкм.
Вторичное защитное покрытие (наружная оболочка микрокабеля) 2 может быть выполнено из УФ-отверждаемой полиакрилатной смолы, которая имеет хорошую адгезию к материалу первичного защитного покрытия ОВ, обеспечивая монолитность микрокабеля, а также совместима по своим свойствам с материалом первичного защитного покрытия оптического волокна и дополнительным упрочняющим слоем.
Упрочнение достигается за счет упрочняющих нитей (например, арамидных) 3, покрытых слоем 4 УФ- отверждаемого полиакрилата.
В соответствии с изобретением, для повышения прочности поверх защитного покрытия 2 микрокабеля накладывают от двух до пяти упрочняющих (арамидных) нитей 3 и одновременно покрывают их слоем 4 УФ-отверждаемого полиакрилата таким образом, что упрочняющие нити 3 оказываются внедренными в слой 4 полиакрилата.
Наличие дополнительного упрочнения позволяет механически усилить миниатюрный кабель. Такой кабель способен выдерживать рывки и позволяет осуществлять передачу сигнала в условиях скоростной размотки, в том числе в морской воде, без значительных потерь, при сохранении небольших массогабаритных характеристик, а также эксплуатироваться при пониженной температуре.
Дополнительное упрочнение, в зависимости от назначения, может быть выполнено как по всей длине кабеля, так и только на некоторых его участках, например, только на начальном участке. Микрокабель в соответствии с настоящим изобретением можно выполнять с чередованием усиленных и не усиленных участков за одно целое без каких-либо соединений (сварок, связок, сростков и т.п.).
При изготовлении кабеля используют известные материалы, выпускаемые в промышленном масштабе. Технология изготовления кабеля включает операцию по наложению общего плотного защитного покрытия 2 на оптические волокна 1, операцию по наложению упрочняющих нитей 3 с одновременным наложением слоя 4 на усиленный участок.
Все операции выполняются на стандартном оборудовании, применяемом для изготовления кабелей.
Изготовленный по настоящему изобретению кабель с дополнительным усилением обладает следующими характеристиками:
- наружный диаметр микрокабеля – не более 0,9 мм;
- строительная длина микрокабеля – не менее 18 км;
- наружный диаметр усиленного участка - не более 1,6 мм;
- длина усиленного участка микрокабеля - не менее 80 м;
- коэффициент затухания одномодового ОВ в кабеле на длинах волн 1,31 и 1,55 мкм не более 0,5 и 0,35 дБ/км, соответственно;
- стойкость к воздействию температур при эксплуатации в воде (в том числе морской) в диапазоне от минус 4° до 40 °С; на воздухе от минус 60 до 100 оС;
- стойкость к воздействию рывка – не менее 110 Н.
название | год | авторы | номер документа |
---|---|---|---|
Кабель оптический монтажный пожаробезопасный огнестойкий | 2023 |
|
RU2804313C1 |
ОПТИЧЕСКОЕ ВОЛОКНО В ПЛОТНОМ БУФЕРНОМ ПОКРЫТИИ, ВОЛОКОННО-ОПТИЧЕСКИЕ КАБЕЛИ И СПОСОБЫ НАЛОЖЕНИЯ ПЛОТНОГО БУФЕРНОГО ПОКРЫТИЯ НА ОПТИЧЕСКОЕ ВОЛОКНО (ВАРИАНТЫ) | 2021 |
|
RU2782677C1 |
СПОСОБ ПРОИЗВОДСТВА МИНИАТЮРНОГО ТЕПЛОСТОЙКОГО ОПТИЧЕСКОГО КАБЕЛЯ ПОВЫШЕННОЙ ПРОЧНОСТИ И КАБЕЛЬ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ | 2013 |
|
RU2568420C2 |
ГИБКАЯ СПЛОШНАЯ ЛЕНТА ИЗ КОМПЛЕКСНОЙ НИТИ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2008 |
|
RU2477687C2 |
СПОСОБ МОНТАЖА ВОЛОКОННО-ОПТИЧЕСКОГО КАБЕЛЯ НА ПРОВОДЕ ВЫСОКОВОЛЬТНОЙ ВОЗДУШНОЙ ЛИНИИ | 1996 |
|
RU2158994C2 |
ЭЛЕКТРИЧЕСКИЙ КАБЕЛЬ С ДАТЧИКОМ ИЗГИБА И СИСТЕМОЙ КОНТРОЛЯ И СПОСОБ ОБНАРУЖЕНИЯ ИЗГИБА В ПО МЕНЬШЕЙ МЕРЕ ОДНОМ ЭЛЕКТРИЧЕСКОМ КАБЕЛЕ | 2009 |
|
RU2510904C2 |
Способ наложения упрочняющего покрытия на буферное покрытие кабеля волоконно-оптического и волоконно-оптический миниатюрный кабель, соответствующий этому способу | 2019 |
|
RU2707662C1 |
СПОСОБ РЕМОНТА ТРУБЫ | 1993 |
|
RU2108514C1 |
УСТРОЙСТВО И СПОСОБ РЕМОНТА ТРУБОПРОВОДА | 2013 |
|
RU2525103C1 |
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОГО ВОЛОКНА И ПОЛУЧЕННОЕ ТАКИМ ОБРАЗОМ ОПТИЧЕСКОЕ ВОЛОКНО | 2007 |
|
RU2448920C2 |
Изобретение относится к кабельной технике. Заявленный оптический кабель содержит по меньшей мере одно оптическое волокно без смазки с плотным вторичным защитным покрытием, а кабель имеет упрочненный начальный участок, выполненный за одно целое с остальным кабелем. При этом упомянутый упрочненный начальный участок выполнен путем наложения упрочняющих арамидных нитей поверх вторичного защитного покрытия и их покрытия слоем УФ-отверждаемого полиакрилата так, что упомянутые упрочняющие нити оказываются внедренными в упомянутый слой УФ-отверждаемого полиакрилата. Технический результат - повышение прочности при размотке, увеличение размещаемой на подвижном объекте длины кабеля для увеличения дальности управляемого перемещения объекта. 2 ил.
Оптический кабель, содержащий по меньшей мере одно оптическое волокно без смазки с плотным вторичным защитным покрытием, кабель имеет упрочненный начальный участок, выполненный за одно целое с остальным кабелем, упомянутый упрочненный начальный участок выполнен путем наложения упрочняющих арамидных нитей поверх вторичного защитного покрытия и их покрытия слоем УФ-отверждаемого полиакрилата так, что упомянутые упрочняющие нити оказываются внедренными в упомянутый слой УФ-отверждаемого полиакрилата.
ОПТИЧЕСКИЙ КАБЕЛЬ И СПОСОБ ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2669545C2 |
0 |
|
SU192307A1 | |
Рабочий орган многоковшового экскаватора продольного копания | 1954 |
|
SU105749A1 |
WO 2001092938 A1, 06.12.2001 | |||
АЭРОТЕНК-ОТСТОЙНИК | 0 |
|
SU173143A1 |
РОТАЦИОННЫЙ РАБОЧИЙ ОРГАН К СВЕКЛОУБОРОЧНЫММАШИНАМ | 0 |
|
SU175764A1 |
Авторы
Даты
2022-05-23—Публикация
2021-03-30—Подача