Установка теплового нагружения обтекателей ракет из неметаллических материалов Российский патент 2022 года по МПК G01L5/16 G01M5/00 

Описание патента на изобретение RU2774740C1

Изобретение относится к испытательной технике, в частности к оборудованию для статических и повторно-статических испытаний обтекателей из неметаллических материалов, а также других изделий авиационной и ракетной техники.

Статические испытания изделий проводят на специальных стендах, позволяющих закреплять изделия в заданных положениях, воспроизводить нагрузки, производить контроль и регистрацию сил, моментов, деформаций, наблюдать за объектом испытаний и давать оценку его состояния в процессе нагружения (Ищенко В.В. Испытания установок вооружения летательных аппаратов. –М.: Изд-во МАИ, 1999. -87 с.). В состав оборудования входят силовая оснастка (в виде силовых пола, потолка и железобетонных колонн), силовозбудители в виде гидравлических цилиндров, измерители силы, обычно тензометры, и рычажные системы с тросами, передающими нагрузку на объект. Рычажные системы служат для объединения элементарных сил (воздействующих непосредственно на объект) в равнодействующую силу, задаваемую силовозбудителем. В большинстве установок для воспроизведения силовой нагрузки применяются гидроцилиндры, например, в технических решениях по авторским свидетельствам СССР № 134063, № 597935, № 505924, а также в патентах РФ на полезную модель № 65225, № 118751, № 52480, № 74470 и в патенте РФ на изобретение № 2199100.

Конструкции перечисленных установок жестко связана с особенностями испытуемых изделий. Кроме того, все испытания проводятся без учета изменения температурного состояния объекта испытаний (при комнатной температуре). Этот факт ограничивает их применение при отработке конструкции обтекателей скоростных ракет, особенно обтекателей из хрупких материалов. Для проведения повторно-статических испытаний таких объектов необходимо воспроизводить и циклическое воздействие тепловой нагрузки, изменение которой существенно отличается от циклограммы силовой нагрузки. Отработка таких режимов возможна в стендах для проведения теплопрочностных испытаний, например, в стенде теплопрочностных испытаний (Баранов А.Н. Теплопрочностные испытания летательных аппаратов. -М.: Издат. отдел ЦАГИ, 1999, - 103 с.) или в стенде по патенту РФ №2519053 «Стенд теплопрочностных испытаний», МПК G01M 5/00, опуб. 10.06.2014.

Недостатком таких стендов является то, что они обладают малой гибкостью. В основном, привязаны к конкретной конструкции и программе испытаний. Для массового производства элементов летательных аппаратов это плюс, а для испытаний широкой номенклатуры изделий, отличающиеся геометрическими размерами и программами испытаний недостаток.

Наиболее близким по технической сущности является техническое решение по патенту РФ №2249196 «Способ испытания на прочность оболочки типа тела вращения», МПК G01N 3/08, опуб. 27.03.2005. В этом решении нагружение оболочки обтекателя осуществляют посредством действия 4-ех сил, векторы, которых направлены от оси оболочки и проходят по линиям пересечения плоскости перпендикулярной оси вращения оболочки с двумя взаимоперпендикулярными плоскостями, проходящими через ось вращения оболочки.

Задачей предполагаемого изобретения является создание компактной установки, которая обладает повышенной надежностью и простотой за счет применения пневмоцилиндров.

Технический результат достигается тем, что предложена установка теплового нагружения обтекателей ракет из неметаллических материалов, содержащая содержащая обтекатель, установленный на каркасе, четыре силовозбудителя для нагружения обтекателя в поперечном направлении посредством действия четырех сил и датчики измерения силы, отличающаяся тем, что силовозбудители установлены в вертикальных колонах каркаса и связаны с блоками для дополнительного приложения силы и в продольном направлении, снаружи обтекателя в зоне нагрева нагревательных панелей установлены два отражающих экрана, поверхность которых эквидистантна либо не эквидистантна поверхности обтекателя, с возможностью их стыковки, область которой проходит через одну из взаимно перпендикулярных плоскостей, а управление силовым нагружением и нагревом осуществляется системой автоматического управления.

2. Установка теплового нагружения обтекателей ракет из неметаллических материалов по п.1, отличающаяся тем, что каркас выполнен в виде двух рам, плоскости симметрии которых пересекаются по оси симметрии испытуемого обтекателя.

3. Установка теплового нагружения обтекателей ракет из неметаллических материалов по п.1, отличающаяся тем, что колонны и поперечные балки силового каркаса выполнены в виде двух параллельно расположенных швеллеров на расстоянии, достаточном для монтажа силовозбудителей.

4. Установка теплового нагружения обтекателей ракет из неметаллических материалов по п.1, отличающаяся тем, что в качестве силовозбудителей можно применить пневмоцилиндры, гидроцилиндры или электроцилиндры.

Анализ известных конструкций установок для теплопрочностных и повторно-статических испытаний изделий типа тел вращения позволяет констатировать, что для максимального приближения к реальному напряженно-деформированному состоянию обтекателя в полете, установка для испытания в наземных условиях должна содержать три взаимоперпендикулярных компонента силовой нагрузки: продольная составляющая, совпадающая с осью симметрий обтекателя; не более двух поперечных составляющих в одном сечении и n сечений приложения силовой нагрузки для воспроизведения изгибающего момента, действующего на обтекатель. Исходя из вышеизложенного вывода, следует, что для воспроизведения силовой нагрузки силовой каркас должен содержать две взаимоперпендикулярные рамы, которые позволяют реализовать способ испытания на прочность обтекателей в форме оболочек типа тела вращения. В этом случае, если вертикальные колоны и верхние поперечные балки выполнить из двух, параллельно расположенных швеллеров, то в вертикальных колонах можно смонтировать силовозбудители, которые шарнирно соединяются с колонной, а усилие штоков силовозбудителей прикладываются к испытуемому обтекателю через тросы и рычажные системы.

Применение пневмоцилиндров для задания циклической силовой нагрузки дало возможность упростить схему силового нагружения. В этом случае не требуется гидростанция. В качестве силового элемента используется сжатый воздух из заводской сети. В случае отсутствия такой сети может использоваться передвижной компрессор, т.е. можно создать передвижные системы повторно-статических испытаний.

Для автоматического задания составляющих силовой нагрузки при использовании пневмоцилиндров по заданной программе используются пневмораспределители. В качестве способа регулирования используется широтно-импульсная модуляция сигнала рассогласования между заданным и фактическим уровнем силовой нагрузки.

На фиг. 1 приведен общий вид в изометрии установки для испытания обтекателей без нагревательных панелей и приложения продольной нагрузки.

На фиг. 2 представлен вид сбоку установки для испытаний.

Установка содержит силовой каркас 1. Испытуемый обтекатель 2 устанавливается на приспособление для монтажа изделия 3. Приложение нагрузки осуществляется силовозбудителями 4 с помощью тросов 5. В качестве силовозбудителей 4 могут быть использованы пневмоцилиндры, гидроцилиндры или электроцилиндры. Нагрев обтекателя производится нагревательными панелями 6, содержащими отражающие экраны 7. Оснастка для приложения силовой нагрузки состоит из рычажной системы 8 и насадки для приложения продольной силы 9. Поперечная и продольные силы задаются через блоки 10 соответственно.

Предлагаемая установка обеспечивает проведение теплопрочностных и повторно-статических испытаний конструкций летательных аппаратов с возможностью изменения направления приложения поперечной нагрузки для воспроизведения реальных условий эксплуатации.

Похожие патенты RU2774740C1

название год авторы номер документа
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2015
  • Райлян Василий Семенович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Просунцов Павел Викторович
RU2583353C1
Способ испытания обтекателей ракет из неметаллических материалов 2017
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
RU2637176C1
Способ статических испытаний обтекателей 2022
  • Тетеревенков Дмитрий Алексеевич
  • Терехин Александр Васильевич
  • Райлян Василий Семенович
  • Афтаев Вадим Владимирович
  • Сандимиров Александр Владимирович
RU2811856C1
Способ теплового нагружения обтекателей ракет из неметаллических материалов 2017
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
  • Неповинных Виктор Иванович
  • Терехин Александр Васильевич
RU2676397C1
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ МАТЕРИАЛОВ И ИЗДЕЛИЙ 2013
  • Товстоног Валерий Алексеевич
  • Мерзликин Владимир Гаврилович
  • Максимов Юрий Викторович
  • Елисеев Виктор Николаевич
  • Мерзликина Наталия Петровна
  • Чирин Константин Вячеславович
RU2530443C1
Способ управления нагревом при тепловых испытаниях антенных обтекателей ракет 2017
  • Русин Михаил Юрьевич
  • Хамицаев Анатолий Степанович
  • Антонов Владимир Викторович
  • Воробьев Сергей Борисович
  • Часовской Евгений Николаевич
  • Райлян Василий Семенович
RU2676385C1
Способ статических испытаний керамических обтекателей 2022
  • Райлян Василий Семенович
  • Русин Михаил Юрьевич
  • Фокин Василий Иванович
  • Тесленко Елена Анатольевна
RU2793603C1
Способ теплопрочностных испытаний керамических обтекателей 2019
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Антонов Владимир Викторович
  • Терехин Александр Васильевич
  • Черемных Алексей Валерьевич
RU2712197C1
Способ теплопрочностных испытаний керамических обтекателей 2018
  • Райлян Василий Семёнович
  • Фокин Василий Иванович
  • Алексеев Дмитрий Владимирович
  • Афтаев Вадим Владимирович
  • Иванов Вячеслав Васильевич
RU2697481C1
СТЕНД ДЛЯ ИСПЫТАНИЙ НА НАГРУЗКИ ОТСЕКА ЛЕТАТЕЛЬНОГО АППАРАТА 2018
  • Бобров Александр Викторович
  • Афанасьев Владимир Николаевич
  • Кустов Роман Васильевич
  • Савченко Юрий Александрович
  • Панкова Ксения Викторовна
  • Власов Николай Анатольевич
  • Жеглов Кирилл Викторович
  • Пиманкина Елена Анатольевна
  • Хорошильцев Алексей Владимирович
RU2695514C1

Иллюстрации к изобретению RU 2 774 740 C1

Реферат патента 2022 года Установка теплового нагружения обтекателей ракет из неметаллических материалов

Изобретение относится к испытательной технике, в частности к оборудованию для статических и повторно-статических испытаний обтекателей из неметаллических материалов, а также других изделий авиационной и ракетной техники. Установка содержит обтекатель, установленный на каркасе, четыре силовозбудителя для нагружения обтекателя в поперечном направлении посредством действия четырёех сил и датчики измерения силы. При этом силовозбудители установлены в вертикальных колоннах каркаса и связаны с блоками для дополнительного приложения силы и в продольном направлении. Снаружи обтекателя в зоне нагрева нагревательных панелей установлены два отражающих экрана, поверхность которых эквидистантна либо не эквидистантна поверхности обтекателя, с возможностью их стыковки, область которой проходит через одну из взаимно перпендикулярных плоскостей, а управление силовым нагружением и нагревом осуществляется системой автоматического управления. Технический результат заключается в повышении надежности и упрощении конструкции. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 774 740 C1

1. Установка теплового нагружения обтекателей ракет из неметаллических материалов, содержащая обтекатель, установленный на каркасе, четыре силовозбудителя для нагружения обтекателя в поперечном направлении посредством действия четырех сил и датчики измерения силы, отличающаяся тем, что силовозбудители установлены в вертикальных колоннах каркаса и связаны с блоками для дополнительного приложения силы и в продольном направлении, снаружи обтекателя в зоне нагрева нагревательных панелей установлены два отражающих экрана, поверхность которых эквидистантна либо не эквидистантна поверхности обтекателя, с возможностью их стыковки, область которой проходит через одну из взаимно перпендикулярных плоскостей, а управление силовым нагружением и нагревом осуществляется системой автоматического управления.

2. Установка теплового нагружения обтекателей ракет из неметаллических материалов по п.1, отличающаяся тем, что каркас выполнен в виде двух рам, плоскости симметрии которых пересекаются по оси симметрии испытуемого обтекателя.

3. Установка теплового нагружения обтекателей ракет из неметаллических материалов по п.1, отличающаяся тем, что колонны и поперечные балки силового каркаса выполнены в виде двух параллельно расположенных швеллеров на расстоянии, достаточном для монтажа силовозбудителей.

4. Установка теплового нагружения обтекателей ракет из неметаллических материалов по п.1, отличающаяся тем, что в качестве силовозбудителей можно применить пневмоцилиндры, гидроцилиндры или электроцилиндры.

Документы, цитированные в отчете о поиске Патент 2022 года RU2774740C1

СПОСОБ ИСПЫТАНИЯ НА ПРОЧНОСТЬ ОБОЛОЧКИ ТИПА ТЕЛА ВРАЩЕНИЯ 2003
  • Райлян В.С.
  • Фокин В.И.
RU2249196C1
СТЕНД ТЕПЛОПРОЧНОСТНЫХ ИСПЫТАНИЙ 2012
  • Бобров Александр Викторович
  • Бурцев Сергей Иванович
  • Лопухов Игорь Иванович
  • Филимонов Александр Борисович
RU2519053C1
Устройство для испытания оболочек 1990
  • Шерник Алексей Остапович
  • Коробов Леонид Алексеевич
SU1781584A1
Устройство для испытания оболочек 1983
  • Жарков Анатолий Федорович
  • Коробов Леонид Алексеевич
SU1161839A1
Стенд для испытания оболочек на прочность и устойчивость 1986
  • Малютин Иван Сергеевич
  • Пилипенко Петр Борисович
  • Карасев Александр Васильевич
SU1381366A1
Баранов А.Н
Теплопрочностные испытания летательных аппаратов
- М.: Издат
отдел ЦАГИ, 1999, - 103 с.

RU 2 774 740 C1

Авторы

Райлян Василий Семенович

Русин Михаил Юрьевич

Фокин Василий Иванович

Антонов Владимир Викторович

Алексеев Дмитрий Владимирович

Даты

2022-06-22Публикация

2021-04-20Подача