Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в ракетно-космической технике при проведении испытаний комплектующих КА: аппаратуры, приборов, узлов конструкции, бортовой кабельной сети, экрановакуумной теплоизоляции. Обезгаживание комплектующих КА необходимо для того, чтобы исключить конденсацию продуктов газоотделения и испарения в вакууме от названных комплектующих на оптические и радиационные поверхности КА в полете и тем самым повысить работоспособность данных поверхностей.
Известен способ (аналог) обезгаживания элементов конструкции КА, заключающийся в том, что помещают КА в вакуумную камеру, вакуумируют ее, поддерживают на КА температуру обезгаживания, выдерживают КА в вакуумной камере в течение заданного времени, прекращают вакуумирование и доводят давление в вакуумной камере до атмосферного (А. Рот, пер. с англ. Вакуумные уплотнения. М.: Энергия, 1971, стр. 10, 26-27).
Наиболее близким по технической сущности и достигаемому техническому результату к предлагаемому изобретению является способ (прототип) обезгаживания элементов конструкции КА, заключающийся в том, что помещают КА в вакуумную камеру, вакуумируют ее до заданного давления и производят нагрев КА до температуры обезгаживания с помощью инфракрасных нагревателей, заполняют криогенный экран вакуумной камеры жидким азотом и поддерживают температуру обезгаживания на КА, выдерживают КА в этих условиях заданное время, после чего прекращают процесс обезгаживания (патент RU 2177376 С1, опубл. 27.12.2001 г., МПК В08В 5/04 (2006.01)).
Недостатком аналога и прототипа является то, что они недостаточно достоверно обеспечивают проведение в полном объеме процесса дегазации испытываемого изделия. Определяющим параметром для аналога и прототипа является только заданное время дегазации. Кроме того, при использовании инфракрасного облучения КА не учитывается тот факт, что использование имитатора солнечного излучения (ИСИ) позволяет создать реальный солнечный поток, имеющий составляющие в инфракрасном, видимом и ультрафиолетовом участках спектра, то есть при использовании ИСИ процесс дегазации происходит в реальном солнечном спектре, как это происходит в полете, а также не учитываются требования к аппаратуре, входящей в состав КА, для которой необходимо проводить испытания при ее включении в условиях воздействия имитации солнечного излучения.
Задачей изобретения является повышение точности и достоверности проведения обезгаживания комплектующих КА.
Техническим результатом является увеличение срока службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности и получение количественной оценки дегазации.
Технический результат достигается за счет того, что в способе обезгаживания элементов конструкции КА в наземных условиях, заключающемся в том, что помещают КА в тепловакуумную камеру (ТВК) с криогенным экраном, вакуумируют ее до заданного давления, заполняют криогенный экран тепловакуумной камеры жидким азотом, одновременно создают с помощью теплового потока заданную температуру на поверхности КА, поддерживают на поверхности КА заданную температуру и выдерживают КА при заданной температуре в тепловакуумной камере заданный промежуток времени, при этом для создания и поддержания на поверхности КА заданной температуры используют тепловой поток от имитатора солнечного излучения (ИСИ), регулируя его интенсивность, включают бортовую аппаратуру КА, поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры КА, измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины которого измеряют значения установившегося суммарного потока натекания и газоотделения в тепловакуумной камере, после чего прекращают вакуумирование тепловакуумной камеры и выдержку КА в ней.
В предложенном способе для получения заданной температуры на поверхности КА используют имитатор солнечного излучения, имеющего полный солнечный спектр, а также измеряют установившийся суммарный поток газоотделения и натекания в вакуумной камере, получая таким образом не только качественную оценку дегазации, но и количественную, а также появляется возможность проводить испытания КА при включенной бортовой аппаратуре. Кроме того, если при испытаниях бортовую аппаратуру КА не включают, то достаточно, чтобы давление в тепловакуумной камере было ниже или равно давлению, при котором длина свободного пробега молекул продуктов газоотделения была бы больше максимального расстояния от поверхности КА до холодного экрана ТВК. Это давление соответствует молекулярно-вязкостному режиму течения (приблизительно 1⋅10-3 мм рт.ст.).
Данный способ осуществляется следующим образом:
- помещают КА в тепловакуумную камеру, например, в ВК 600/300;
- вакуумируют ТВК до заданного давления, которое измеряют, например, вакуумметром Televac СС-10, например, до 5⋅10-5 мм рт.ст. с помощью вакуумных насосов, например, механических Oerlikon Leybold RUTA WH7000/DV1200/G, турбомолекулярных Edwards STP-iXA4506C;
- заполняют криогенный экран ТВК жидким азотом и одновременно включают ИСИ, например, ИС-500 ВК600/300, регулируя его интенсивность для создания и поддержания на поверхности КА заданной температуры, например, 60°С, которую измеряют, например, с помощью датчиков температур ТЭП 018-06;
- выдерживают космический аппарат в ТВК при заданной температуре заданный промежуток времени, например, 74 ч;
- включают бортовую аппаратуру КА, при этом заданное давление в вакуумной камере поддерживают на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры КА, например, 3⋅10-5 мм рт.ст., которое указано в технической документации на аппаратуру, после проверки бортовую аппаратуру выключают;
- измеряют с заданной периодичностью давление в ТВК и определяют момент достижения стабильного давления и суммарного потока натекания и газоотделения в тепловакуумной камере, например, отключая систему вакуумирования от тепловакуумной камеры и используя уравнение:
Q=V⋅ΔР/ΔТ,
где V - свободный объем тепловакуумной камеры;
ΔР - нарастание давления в ТВК за время ΔT;
ΔT - длительность отключения системы вакуумирования от тепловакуумной камеры;
- достигают стабильной величины давления в тепловакуумной камере, например, когда изменение величины суммарного потока натекания и газоотделения в вакуумной камере отличается от предыдущего измеренного значения не более чем на 5%;
- прекращают вакуумирование камеры и выдержку космического аппарата в ней, после удаляют КА из тепловакуумной камеры.
Пример осуществления способа: проводились испытания экспериментального изделия по предлагаемому способу обезгаживания. Были получены следующие результаты по суммарному потоку натекания и газоотделения в тепловакуумной камере в процессе обезгаживания:
- через 24 ч выдержки изделия поток составил Q=60 л⋅мкм рт.ст./с;
- через 50 ч выдержки изделия поток составил Q=35 л⋅мкм рт.ст./с;
- через 60 ч выдержки изделия поток составил Q=30 л⋅мкм рт.ст./с;
- через 70 ч выдержки изделия поток составил Q=29 л⋅мкм рт.ст./с.
Так как последнее измеренное значение величины суммарного потока в тепловакуумной камере отличалось от предыдущего менее чем на 5%, было принято решение о завершении испытаний.
Использование данного способа обезгаживания элементов конструкции космических аппаратов в наземных условиях позволит увеличить срок службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности за счет использования ИСИ, позволяющего более достоверно проводить процесс дегазации, максимально приблизив его к натурным условиям эксплуатации КА, а также позволит, измеряя установившийся суммарный поток газоотделения и натекания в ТВК, получать не только качественную оценку дегазации, но и количественную. Способ достаточно прост в эксплуатации и не требует разработки нового оборудования.
название | год | авторы | номер документа |
---|---|---|---|
СТЕНД ДЛЯ ТЕПЛОВЫХ ИСПЫТАНИЙ РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ КОСМИЧЕСКИХ АППАРАТОВ | 2014 |
|
RU2553411C1 |
Стенд для тепловакуумных испытаний элементов космических аппаратов | 2020 |
|
RU2759359C1 |
СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2565149C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОГО СОПРОТИВЛЕНИЯ ЭКРАННО-ВАКУУМНОЙ ТЕПЛОИЗОЛЯЦИИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА ПРИ ТЕРМОВАКУУМНЫХ ИСПЫТАНИЯХ | 2006 |
|
RU2355608C2 |
Стенд для проведения тепловакуумных испытаний космических аппаратов в условиях, имитирующих натурные | 2020 |
|
RU2734681C1 |
Способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов | 2022 |
|
RU2803298C1 |
СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА | 2014 |
|
RU2564056C1 |
УСТРОЙСТВО ГРАДУИРОВКИ ПРИЕМНИКОВ ЛУЧИСТОЙ ЭНЕРГИИ | 2009 |
|
RU2408854C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ | 1978 |
|
SU1840701A1 |
Способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность | 2021 |
|
RU2772763C1 |
Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в космической технике при проведении испытаний комплектующих КА: аппаратуры, приборов, узлов конструкции, бортовой кабельной сети, экрановакуумной теплоизоляции. Обезгаживание комплектующих КА необходимо для того, чтобы исключить конденсацию продуктов газоотделения и испарения в вакууме от них на оптические и радиационные поверхности КА в полете и тем самым повысить работоспособность оптических и радиационных поверхностей КА. Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях заключается в том, что помещают космический аппарат в тепловакуумную камеру с криогенными экранами, вакуумируют ее до заданного давления. Далее заполняют криогенный экран тепловакуумной камеры жидким азотом. Одновременно создают тепловой поток заданной температуры на поверхности космического аппарата. Поддерживают на поверхности космического аппарата заданную температуру и выдерживают космический аппарат при заданной температуре в тепловакуумной камере заданный промежуток времени. Для создания и поддержания на поверхности космического аппарата заданной температуры используют тепловой поток от имитатора солнечного излучения, регулируя его интенсивность. Включают бортовую аппаратуру космического аппарата, при этом поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры космического аппарата. Измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины которого измеряют значение установившегося суммарного потока натекания и газоотделения в тепловакуумной камере. После чего прекращают вакуумирование тепловакуумной камеры и выдержку космического аппарата в ней. Изобретение обеспечивает увеличение срока службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности и получение количественной оценки дегазации.
Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях, заключающийся в том, что помещают космический аппарат в тепловакуумную камеру с криогенным экраном, вакуумируют ее до заданного давления, заполняют криогенный экран тепловакуумной камеры жидким азотом, одновременно создают тепловой поток заданной температуры на поверхности космического аппарата, поддерживают на поверхности космического аппарата заданную температуру и выдерживают космический аппарат при заданной температуре в тепловакуумной камере заданный промежуток времени, отличающийся тем, что для создания и поддержания на поверхности космического аппарата заданной температуры используют тепловой поток от имитатора солнечного излучения, регулируя его интенсивность, включают бортовую аппаратуру космического аппарата, при этом поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры космического аппарата, измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины давления в тепловакуумной камере измеряют значение установившегося суммарного потока натекания и газоотделения в тепловакуумной камере, после чего прекращают вакуумирование тепловакуумной камеры и выдержку космического аппарата в ней.
СПОСОБ ОБЕЗГАЖИВАНИЯ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2000 |
|
RU2177376C1 |
СПОСОБ ОБЕЗГАЖИВАНИЯ ИЗДЕЛИЙ | 1999 |
|
RU2155106C1 |
СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА | 2014 |
|
RU2564056C1 |
Способ проведения наземных тепловакуумных испытаний космических объектов в условиях, имитирующих космические | 2020 |
|
RU2734706C1 |
СПОСОБ ИМИТАЦИИ ВНЕШНИХ ТЕПЛОВЫХ ПОТОКОВ ДЛЯ НАЗЕМНОЙ ОТРАБОТКИ ТЕПЛОВОГО РЕЖИМА КОСМИЧЕСКИХ АППАРАТОВ | 2005 |
|
RU2302984C1 |
Способ обезгаживания материалов в вакууме | 1980 |
|
SU966783A1 |
US 4141373 A1, 27.02.1979 | |||
US 6332591 B1, 25.12.2001. |
Авторы
Даты
2022-08-22—Публикация
2021-07-26—Подача