Изобретение относится к устройствам контроля дальности действия лазерных дальномеров без полевых испытаний.
Известна установка для бестрассовой проверки лазерного дальномера, содержащая ослабитель мощности лазерных импульсов проверяемого дальномера, устройство формирования стартового импульса, персональный компьютер, блок питания, оптическую систему формирования лазерного пучка, куб-призму совмещения изображения сетки в виде излучающих светодиодов с пучком лазера, источник питания сетки, светодиода установки и платы формирования стартового импульса.
(см. Патент РФ №2541077, G01C 3/00, 2006. и патент РФ№2545579, G01C 3/00, 2021, принятый за прототип)
Существующие установки такого типа обеспечивают точное измерение дальности лишь в ограниченных диапазонах, что связано с величиной сигнала, приходящего от цели. Если взять диапазон дальности от 150 м до 10000 м, то уровень приходящего сигнала составляет (освещенность от цели на 150 м и 10000 м), а сигнал может регулироваться диафрагмами в установке в пределах 2,5⋅102. Дальнейшее ослабление сигнала обеспечивается внешними диафрагмами, установленными на выходе, обеспечивая ослабление сигнала до 10-4, что достигается использованием диафрагм диаметром менее 1 мм. Для установки, используемой в полевых условиях, это не допустимо, так как маленькое отверстие быстро загрязняется, что приводит к большим ошибкам в измерении дальности.
Задачей и техническим результатом предложения является обеспечение проверки дальности действия дальномера в широком диапазоне дальностей.
Решением заявленной задачи является установка для бестрассовой проверки лазерного дальномера, содержащая ослабитель мощности лазерных импульсов проверяемого дальномера, устройство формирования стартового импульса, персональный компьютер, блок питания, оптическую систему формирования лазерного пучка, куб-призму совмещения изображения сетки в виде излучающих светодиодов с пучком лазера, источник питания сетки, светодиода установки и платы формирования стартового импульса, при этом источник света имеет две схемы освещения оптики формирования амплитуды импульсов: одну для небольших дальностей в виде лазера и поворотного зеркала и вторую для большой дальности в виде наклонного зеркала и диффузно-отражающей пластины с четко гарантируемым освещением оптики, формирование амплитуды излучения в виде двух объектов, между которыми расположен диск калиброванных диафрагм.
Согласно изобретению, положительный эффект достигается возможностью регулировки сигнала в режиме прямого освещения и в режиме ослабленного освещения по схемам специального источника излучения лазера, включенным в структурную схему установки.
На фиг. 1. представлена структурная схема установки.
На фиг. 2. - схемы специального источника излучения лазера (осветителя) в режиме прямого освещения (а) и в режиме ослабленного освещения (б).
Установка работает следующим образом.
Для определения дальности запускается исследуемый дальномер. Световой импульс дальномера через объектив 1 попадает в ослабитель 14 через светорассеивающую пластинку 13 и после ослабителя через волоконно-оптический жгут 15 попадает на плату формирования стартового импульса 16. Стартовый импульс попадает в электронный блок и задерживается на время, за которое световой импульс проходит от дальномера до объекта, для которого измеряется дальность, и возвращается обратно в приемный канал дальномера. Задержанный электрический импульс попадает на лазер 6, который генерирует световой импульс требуемых параметров по амплитуде и длительности. При измерении дальности для близко расположенных целей импульс попадает на вход оптической системы 7,8,9 через наклонное зеркало 22. При измерении дальности для удаленных целей импульс засвечивает оптическую схему 7,8,9 через наклонное зеркало системы и рассеивающую пластинку 23. Наклонное зеркало 22 при этом убирается из оптической схемы. Световой импульс попавший на вход оптической системы 7,8,9 калибруется диском калиброванных диафрагм до величины амплитуды импульса, отражающего от объекта и передаваемых в фокальную плоскость выходного объектива установки 11 и входной объектив дальномера. Если амплитуда сигнала соответствует с амплитудой, от которой срабатывает дальномер, то последний выдает требуемую дальность. Изображение должно быть близко к пятну рассеивания входного объектива приемного канала дальномера. Таким образом можно проверить дальномер на всех дальностях. При этом можно проверить и существующую на первой проверке чувствительность приемного канала дальномера. Для этого на предельной дальности действия дальномера определяют импульс, при котором срабатывает дальномер и соседнее по величине амплитуды, при котором дальномер не срабатывает. Чувствительность дальномера будет соответствовать величине импульса, от которого дальномер срабатывает.
Персональный компьютер 3 реализует программу работы установки, в частности, при определении помехозащищенности вырабатывается не один импульс, а целая пачка, либо ни одного. В пачке обычно присутствует лишь один, соответствующий требуемой дальности Точный ответ дальномера соответствует нормальной помехозащищенности. Точность определения дальномера определяют точностью задержки импульса, и обычно составляет величину ±1 м (6,7 сек). Основные функциональные узлы в оптико-механическом устройстве. На передней панели размещен выходной объектив 13, сопряженный с оптикой формирования луча 7,8,9, которая в свою очередь с оптикой формирования луча лазера 22, 23, 24, к которой пристыкован лазер 6. Для точного совмещения луча лазера с приемником канала дальномера в установке предусмотрена прицельная сетка (марка) 17. Марка вводится в луч лазера установки оптикой и с помощью куб-призмы 12 и проектируется на приемник дальномер. Марки точно совмещаются с лучом лазера и поэтому необходимо луч лазера точно попадает на приемник лазерного дальномера.
Оптико-механический блок устанавливается на стол, имеющий нижний и верхний столики. Верхний столик, на котором закреплен оптико-механический блок, может отклоняться на угол ±5° относительно нижнего столика для точной установки оптико-механического блока по отношению к входному объективу дальномера, нижний столик крепится на подставке, которая может перемещаться по высоте. Подставка крепится в рейтере, устанавливаемом на оптическую скамью.
Для питания элементов установки используется сетевое напряжение 220 в 50 Гц и фильтр сетевой 5 и блок питания 2. Напряжение 12 В подается непосредственно от блока питания на плату формирования стартового импульса и преобразователь (12/5 В) - 18 для подачи на марки 17 и сигнального светодиода 19. Сигналы управления от персонального компьютера 3 подаются в регулируемый светодиодами 21 блок электронный 10, по кабелю USB - 20.
Осветитель установки представляет лазерный излучатель 6 (фиг. 2а), в прямом режиме работы установки используется поворотное зеркало 22 и линзы 7 оптического устройства, формирующего лазерный луч. Использование механических диафрагм с диаметром до 1 мм позволяет уменьшить световой поток примерно в 250 раз, что недостаточно для больших дальностей. Поэтому при отведении поворотного зеркала 22 освещенность линзы 7 производится при использовании зеркала 4 и рассеивающей пластины 23, установленной после пластины (рис. 2б). При выбранной схеме размер , и размер соответствует величине из условия (ƒ - фокусное расстояние оптической системы формирующего лазерного луча). В этом случае ослабление сигнала будет составлять величину , где Е1 - освещенность линзы по схеме 2а, Е2 - освещенность линзы по схеме 2б.
Освещенность по схеме 2а:
Освещенность по схеме 2б:
Где I0 - сила излучения лазера, α - угол между направлениями и , P - коэффициент отражения от пластины 4, Адиаф - площадь диафрагмы.
Соотношение освещенности и будет определять ослабление светового потока.
При выборе
при Адиаф=2 мм, α=45°, Р=0,6
При этом в дальнейшем освещенность будет изменяться калиброванными диафрагмами. Минимальная величина на выходе установки составит освещенность Евых ~10-6 Вт/см2. Регулировка освещенности может производиться изменением размера l3, l4 и l5 от точки А до элементов схемы и диаметра диафрагмы.
Использование изобретения обеспечивает проверку дальности действия дальномера в широком диапазоне дальностей.
название | год | авторы | номер документа |
---|---|---|---|
УСТАНОВКА ДЛЯ БЕСТРАССОВОЙ ПРОВЕРКИ ЛАЗЕРНОГО ДАЛЬНОМЕРА | 2013 |
|
RU2541677C2 |
УНИВЕРСАЛЬНАЯ УСТАНОВКА ДЛЯ ПРОВЕРКИ ЛАЗЕРНОГО ДАЛЬНОМЕРА | 2017 |
|
RU2678259C2 |
ДВУХКАНАЛЬНЫЙ ПРИЦЕЛ НОЧНОГО ВИДЕНИЯ | 2002 |
|
RU2296938C2 |
ПРИБОР НАБЛЮДЕНИЯ-ПРИЦЕЛ СО ВСТРОЕННЫМ ПАССИВНЫМ ДАЛЬНОМЕРОМ | 2021 |
|
RU2785957C2 |
ПРИЦЕЛ-ПРИБОР НАВЕДЕНИЯ С ЛАЗЕРНЫМ ДАЛЬНОМЕРОМ | 2011 |
|
RU2464601C1 |
СПУТНИКОВАЯ ЛАЗЕРНАЯ ДАЛЬНОМЕРНАЯ СИСТЕМА | 1992 |
|
RU2037849C1 |
ЛАЗЕРНЫЙ ДАЛЬНОМЕР | 2005 |
|
RU2299402C1 |
МОДЕЛЬ ОСВЕТИТЕЛЬНОЙ СИСТЕМЫ АЭРОДРОМА ДЛЯ ОБУЧЕНИЯ ПОСАДКЕ | 1992 |
|
RU2042981C1 |
ПРИЦЕЛ-ДАЛЬНОМЕР ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ И ГРАНАТОМЕТОВ | 2013 |
|
RU2536186C1 |
МНОГОКАНАЛЬНОЕ ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО КОРАБЕЛЬНОГО ЗЕНИТНОГО КОМПЛЕКСА ДЛЯ ОБНАРУЖЕНИЯ И СОПРОВОЖДЕНИЯ ВОЗДУШНЫХ И НАДВОДНЫХ ЦЕЛЕЙ (ВАРИАНТЫ) | 2008 |
|
RU2406056C2 |
Изобретение относится к устройствам контроля дальности действия лазерных дальномеров без проведения полевых испытаний и оценки чувствительности канала приема отраженного от цели светового сигнала. Сущность изобретения заключается в двухуровневой схеме освещения оптики формирования амплитуды импульсов. Заявленная установка содержит выходной объектив, сопряженный с объективом дальномера; устройство сопряжения с объективом дальномера, обеспечивающее ослабление лазерного луча; плату формирования стартового импульса; электронный блок задержки импульса; лазер; персональный компьютер; двухуровневую схему освещения, состоящую из двух наклонных зеркал, светорассеивающей пластины; оптику, состоящую из двух линз и диска калиброванных диафрагм, обеспечивающих требуемую мощность импульса лазера; куб-призму, обеспечивающую совмещение лазерного сигнала и излучение марки. Техническим результатом заявленного изобретения является обеспечение проверки дальности действия дальномера в широком диапазоне дальностей. 2 ил.
Установка для бестрассовой проверки лазерного дальномера, содержащая ослабитель мощности лазерных импульсов проверяемого дальномера, устройство формирования стартового импульса, персональный компьютер, блок питания, оптическую систему формирования лазерного пучка, куб-призму совмещения изображения сетки в виде излучающих светодиодов с пучком лазера, источник питания сетки, светодиода установки и платы формирования стартового импульса, отличающая тем, что источник света имеет две схемы освещения оптики формирования амплитуды импульсов: одну для небольших дальностей в виде лазера и первого наклонного зеркала и вторую для большой дальности в виде второго наклонного зеркала и светоотражающей пластины с гарантируемым освещением оптики, формирование амплитуды излучения в виде двух объектов, между которыми расположен диск калиброванных диафрагм.
RU 2745579 C1, 30.03.2021 | |||
УСТРОЙСТВО для ОРИЕНТАЦИИ УКУПОРЕННЫХ | 0 |
|
SU194537A1 |
УНИВЕРСАЛЬНАЯ УСТАНОВКА ДЛЯ ПРОВЕРКИ ЛАЗЕРНОГО ДАЛЬНОМЕРА | 2017 |
|
RU2678259C2 |
US 10782408 B2, 22.09.2020 | |||
DE 102016102589 A1, 13.04.2017 | |||
CN 103884316 B, 09.03.2016 | |||
JP 2011117940 A, 16.06.2011. |
Авторы
Даты
2022-09-05—Публикация
2021-07-14—Подача