Изобретение относится к рыбной промышленности и может быть использовано при производстве кормовых продуктов для обеспечения повышения питательной доступности микроэлементов животных, в частности рыб.
Важность элементов в питании животных определяются их влиянием на продуктивные качества животных. Недостаток железа ведет к снижению биосинтеза гемоглобина, и как следствие к железодефицитной анемии в организме рыб. Кроме того, недостаток может сказаться на иммунологической резистентности, скорости обменных процессов в организме животных, а также на механизме и скорости межэлементных взаимодействий в органах и тканях животных.
Известна кормовая добавка (RU2028048, A01K61/00, A23K1/17, 1995 г.), включающая, мас.%: метионин, концентрат водного экстракта из отходов виноградарских хозяйств (1,60%), витамины: В1 (0,80%), Е (1,80%), РР (0,20%), хлорид цинка (0,03%) и соли микроэлементов: железа (0,60%), кальция (0,60%), кобальта (0,04%), марганца (0,04%) и меди (0,04%).
Недостатком добавки является применение микроэлементов в виде неорганических солей, которые в условиях индустриального выращивания в должной степени не удовлетворяют физиологические потребности рыб, а кроме того при диссоциации минеральных компонентов в форме солей в организме животных происходит нежелательное накопление анионов солей металлов.
Известен способ переработки отходов животного и растительного происхождения для получения белковых добавок к кормовому рациону животных, птиц и рыб (RU 2215427, А23К 1/10, А23К 1/14, А23Р 1/12, 2000 г.). Способ предусматривает измельчение отходов животного и растительного происхождения, дозирование компонентов, перемешивание, экструдирование и охлаждение, после экструдирования осуществляется быстрый пневмоотвод пара и воздуха из экструдата.
Недостатком данного способа является трудоемкость приготовления кормовой добавки и отсутствие в добавке гемового железа, что снижает качество корма.
Известен способ приготовления кормов для рыб (RU 2192756, A23K 1/16, A23K 1/175, 2002 г.), в котором в качестве кормовой добавки используют ультрадисперсные частицы (УДЧ) железа размером 7-20 нм, дозой 25 мг/кг корма, обработанные ультразвуком в течение 5 мин с частотой 44 кГц, затем УДЧ смешивают с глицерином в соотношении 1:12, и смешивают с фаршем животной части корма (50%), состоящей из селезенки, килечного фарша и калифорнийского червя, а затем смешивают с гранулированным кормом ЛК-5 (50%).
Недостатком данного способа является увеличение себестоимости производства комбикормов из-за включения в состав животной части корма, а также короткий срок хранения корма и возможности развития в процессе хранения болезнетворных бактерий, которые могут приводить к иммунодепрессии рыб.
Известен способ производства протеинового кормового продукта с гемовым железом (RU 2604827, A23K 10/24, A23K 10/30, A23K 40/25, 2015 г.). Способ включает переработку отходов животного происхождения (кровяное сырье и колбасный утиль размером частиц 5-6 мм, доведенные до влажности 25-30%, мясокостная мука с влажностью не более 10%) и растительного сырья (злаковые культуры для кормовых целей с влажностью не более 14%), дозирование компонентов в соотношении 2:1:1:1 соответственно, смешивание, экструдирование и охлаждение.
Недостатком данного способа является трудоемкость приготовления кормовой добавки.
Известен способ повышения питательной доступности металлов для животных (RU 2549930, A23K 1/16, 2015 г.), за счет введения в корм добавки содержащей, по меньшей мере одно соединение, выбранное из группы, состоящей из глютаминовой N,N-диуксусной кислоты (GLDA), и комплекса металла с GLDA, натриевой соли GLDA, калиевой соли GLDA, метилглицин-N,N-диуксусной кислоты (MGDA), комплекса металла с MGDA, натриевой соли MGDA и калиевой соли MGDA.
Недостатком данного способа является отсутствие точных доз введения металлов для кормления рыб, входящих в состав добавки и трудоемкость приготовления кормовой добавки.
Технический результат - коррекция элементного статуса рыб.
Поставленная задача решается тем, что в известном способе повышения элементного статуса рыб, включающем скармливание комбикорма, тонкий слой корма опрыскивают полученными методом высокотемпературной конденсации ультрадисперсными частицами (УДЧ) железа, размером 100±2 нм, в дозе 30 мг/кг корма, предварительно обработанные ультразвуком в течение 30 мин с частотой 35 кГц.
Для осуществления способа в условиях кафедры биотехнологии животного сырья и аквакультуры Оренбургского государственного университета проведен эксперимент, в ходе которого было сформировано две группы рыб: контрольная и опытная. Контрольная группа (К) получала основной рацион (ОР), опытная (О) - ОР с добавлением УДЧ железа, дозировкой 30 мг/кг корма. Продолжительность эксперимента 56 суток.
В качестве ОР использовался сбалансированный по питательным веществам комбикорм, состоящий: мука рыбная (20%), мука мясокостная (6%), шрот подсолнечный (25%), шрот соевый (35%), масло растительное (5%), мука пшеничная (8%), премикс ПМ-2 (1%).
Материаловедческая аттестация ультрадисперсных частиц включала электронную сканирующую, просвечивающую и атомно-силовую микроскопию с использованием LEX T OLS4100, JSM 7401F, JEM-2000FX («JEOL», Япония). Размерное распределение частиц исследовалось на анализаторе наночастиц Brookhaven 90Plus/BIMAS Zeta PALS и Photocor Compact («Фотокор», Россия). Биологическая экспертиза ультрадисперсных частиц проводилась с использованием lux-биосенсоров штамм Escherichia coli K12 TG1 pF1 по методике (Deryabin D. G., Aleshina E. S., Efremova L. V. Application of the inhibition of bacterial bioluminescence test for assessment of toxicity of carbon-based nanomaterials. Microbiology. 2012;81(4):492-497. doi: 10.1134/S0026261712040042.).
Экспериментальные исследования выполнены в соответствии с инструкциями Russian Regulations, 1987 (Order No.755 on 12.08.1977 the USSR Ministry of Health) и «The Guide for Care and Use of Laboratory Animals (National Academy Press Washington, D.С.1966)». При выполнении исследований были приняты усилия, чтобы свести к минимуму страдания животных и уменьшения количества используемых образцов.
В ходе эксперимента суточную норму кормления определяли в зависимости от массы тела рыб и температуры воды, в соответствии с общепринятой технологией выращивания (Пономарев, С. В. Индустриальное рыбоводство: учебник / С. В. Пономарев, Ю. Н. Грозеску, А. А. Бахарева. - 2-е изд., испр. и доп.- Санкт-Петербург: Лань, 2013. - 448 с.).
Упитанность рыб рассчитывалась по формуле Фультона (Пряхин, Ю.В. Методы рыбохозяйственных исследований / Ю.В. Пряхин, В.А. Шкицкий. - Краснодар: Кубанский гос.ун-т, 2006. - 214 с.).
Элементный состав органов и тканей рыб исследован методами атомно-эмиссионной спектрометрии и масс спектрометрии с индуктивно связанной плазмой (Optima 2000 V, «Perkin Elmer», США) и масс-спектрометрии (Elan 9000, «Perkin Elmer», США) в лаборатории АНО «Центра биотической медицины», Москва.
Полученные в ходе эксперимента результаты были статистически обработаны с использованием программного пакета Statistica 10.0. Достоверность различий сравниваемых показателей определяли по t-критерию Стьюдента. Уровень значимой разницы был установлен на р≤0,05.
В ходе проведенных экспериментальных исследований было установлено, что введение в рацион железа в ультрадисперсной форме, положительно повлияло на рост и развитие рыб (табл.1). Сохранность рыб в опытной группе составила 100%, а в контрольной 98%. Живая масса рыб опытной группы в конце опыта составила 37,6 г, что выше контроля на 8,2%. Упитанность рыб говорит о хорошем физиологическом состоянии подопытной рыбы.
Рыбоводно-биологические показатели карпа в период выращивания
г
%
Примечание: * Р<0,05
Анализ крови показал активность обменных процессов в организме рыб в течение всего эксперимента (табл. 2). Ожидаемо, что введение железа в ультрадисперсной форме отразиться на уровне гемоглобина, так к концу эксперимента зафиксировано повышение гемоглобина на 5,8% (Р<0,05) по сравнению с контролем.
В целом, анализ биохимических показателей крови отклонений не выявил, и показатели находились в пределах физиологической нормы. В частности, в опытной группе зафиксировано к концу эксперимента высокое содержание белка по сравнению с контролем на 36%, что является положительным индикатором физиологического состояния рыб, так как низкие значения белка связаны со снижением жизнестойкости и могут сопровождаться гибелью рыб.
Гематологические показатели карпа
Анализ содержания макро- и эссенциальных микроэлементов в органах и мышечной ткани рыб показал положительное влияние УДЧ железа на депонирование химических элементов, участвующих в формировании опорно-двигательного аппарата, в частности отмечено достоверное повышение концентрации макроэлементов: Ca на 42% (Р<0,001), P на 32% (Р<0,001), Na на 27% (Р<0,001), Mg на 19% (Р<0,001) и K на 8,2% (Р<0,05) по сравнению с контрольной группой (таблица 3). Подобная динамика наблюдалась и во внутренних органах, так уровень макроэлементов в опытной группе был выше контроля: Ca на 9%, P на 19,6%, Mg на 25% (Р<0,001) и K на 19,5% (Р<0,05).
Анализ содержания эссенциальных микроэлементов показал, что в опытной группе концентрация эссенциальных микроэлементов выше контрольных значений, как в мышечной ткани: Mn на 72,2% (Р<0,001), Zn на 34% (Р<0,001), Cu на 18,8% (Р<0,05), Se на 17,5% (Р<0,001), Cr на 6% (Р<0,05), Co на 6% (Р<0,05) и Fe на 2,2%; так и во внутренних органах: Mn на 6,8% (Р<0,001), Zn на 34% (Р<0,001), Cu на 80% (Р<0,05), Se на 34% (Р<0,001), Cr на 118% (Р<0,05), Co на 63% (Р<0,05) и Fe на 7,5% (табл.4).
Концентрация макроэлементов в теле рыб в конце эксперимента, мкг/гол.
Концентрация эссенциальных микроэлементов в теле рыб в конце эксперимента, мкг/гол.
±9,0
±0,03
±0,37
±0,008
±0,38
±22
±8,6
±0,03*
±0,007*
±0,63***
±28***
Примечание: * Р<0,05; ** Р<0,01; *** Р<0,001.
Таким образом, установлено увеличение пулов макро- и микроэлементов в организме рыб. Оценивая полученные данные, можно предположить, что введение в корм рыб УДЧ железа, предварительно обработанные ультразвуком, вызывает образование нестойких соединений, активно взаимодействующих с компонентами корма. В результате корм приобретает новые свойства, в том числе специфическую сверхдоступность минеральных компонентов, происходит пролонгированное действие на систему гомеостатического регулирования уровня микроэлементов в организме рыб, приводящее к стимуляции обмена микроэлементами и повышении элементного статуса животных, что в свою очередь приводит к повышению физиологического статуса животных (Воздействие экструдированных продуктов на биологическую доступность и обмен химических элементов в организме цыплят-бройлеров / Курилкина М.Я., Холодилина Т.Н., Муслюмова Д.М., Казачкова Н.М., Мирошникова Е.П.// Вестник мясного скотоводства. 2016. №2 (94). С. 69-75.).
Анализируя полученные данные, можно сделать следующие выводы:
- добавление в корм УДЧ железа положительно влияет на рост и развитие рыб;
- способ коррекции элементного статуса рыб, предусматривающий введение в корм УДЧ железа в дозировке 30 мг/кг корма подтвержден возможностью его осуществления с помощью описанных в заявке средств и методов;
- заявленное изобретение соответствует условию «промышленная применимость».
название | год | авторы | номер документа |
---|---|---|---|
Способ повышения продуктивности рыбы | 2022 |
|
RU2796824C1 |
Способ повышения продуктивности и стимуляции иммунного ответа организма рыб | 2022 |
|
RU2792439C1 |
Способ повышения продуктивности карповых рыб | 2022 |
|
RU2789437C1 |
Способ коррекции микробиоценоза кишечника для повышения продуктивности и резистентности организма рыб | 2023 |
|
RU2809115C1 |
Способ коррекции микробиоценоза кишечника рыб для повышения их продуктивности | 2024 |
|
RU2821579C1 |
СПОСОБ ПОВЫШЕНИЯ ПЕРЕВАРИМОСТИ КОМПОНЕНТОВ КОРМА СЕЛЬСКОХОЗЯЙСТВЕННЫМИ ЖИВОТНЫМИ | 2018 |
|
RU2692662C1 |
Способ снижения концентрации токсических элементов в мышечной ткани рыб | 2022 |
|
RU2777766C1 |
Способ увеличения доступности белковых рационов в пищеварительном тракте крупного рогатого скота | 2021 |
|
RU2766683C1 |
Способ повышения продуктивности осетровых рыб | 2021 |
|
RU2762421C1 |
Способ селективного снижения содержания токсичных элементов в организме цыплят-бройлеров | 2022 |
|
RU2796271C1 |
Изобретение относится к кормопроизводству, в частности к способам приготовления кормов для рыб. Способ включает скармливание комбикорма, тонкий слой которого опрыскивают полученными методом высокотемпературной конденсации ультрадисперсными частицами железа, размером 100±2 нм, в дозе 30 мг/кг корма, предварительно обработанными ультразвуком в течение 30 мин с частотой 35 кГц. Изобретение обеспечивает увеличение концентрации макро- и эссенциальных микроэлементов в мышечной ткани и во внутренних органах рыб. 4 табл.
Способ коррекции элементного статуса рыб, включающий скармливание комбикорма, отличающийся тем, что тонкий слой корма опрыскивают полученными методом высокотемпературной конденсации ультрадисперсными частицами железа, размером 100±2 нм, в дозе 30 мг/кг корма, предварительно обработанными ультразвуком в течение 30 мин с частотой 35 кГц.
ПРИМЕНЕНИЕ МЕТАЛЛОСОДЕРЖАЩЕЙ ДОБАВКИ В КОРМЕ ДЛЯ ЖИВОТНЫХ | 2010 |
|
RU2549930C2 |
СПОСОБ ПРОИЗВОДСТВА ПРОТЕИНОВОГО ПРОДУКТА С ГЕМОВЫМ ЖЕЛЕЗОМ | 2015 |
|
RU2604827C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КОРМА | 2000 |
|
RU2192756C2 |
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ЖИВОТНОГО И РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ | 2000 |
|
RU2215427C2 |
КОРМОВАЯ ДОБАВКА ДЛЯ ЖИВОТНЫХ И РЫБ | 1992 |
|
RU2028048C1 |
Многоканальное устройство для автоматизации виброиспытаний | 1981 |
|
SU968658A1 |
Авторы
Даты
2022-11-17—Публикация
2022-04-05—Подача